Remark

The credits (shown in brackets) for ETH courses with the ending -DRL as for all UZH courses are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate (in case they don't take the course via a Foundations of D-Math module and do the examination). Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules. Booking courses via a Foundations of D-Math module gives 3 credits, regardless of the specific course.

 

 

FS 15
Title (Credits)Time & PlaceInstructor
Algebraic Topology II (3)Tu, 10.15-12.00
ETH HG D 7.1
Fr, 13.15-15.00
ETH HG G 3
Fr, 14.15-15.00
ETH HG F 26.5
Pandharipande
Algorithmic Methods for Complex Systems (2)Fr, 13.15-15.00
ETH ML J 37.1
Adjiashvili
Analytic Theory of L-Functions (2)We, 10.15-12.00
ETH HG G 43
Iwaniec
Asymptotics in Finance (2)We, 10.15-12.00
ETH HG E 33.5
Muhle-Karbe
Bayesian Inference (3)Th, 09.00-11.00
HRS F05
Th, 11.15-12.00
HRS F05
Held
Brownian Motion and Stochastic Calculus (2)Tu, 10.15-12.00
ETH HG E 1.1
We, 08.15-10.00
ETH HG E 1.1
Teichmann
Causality (2)Mo, 08.15-10.00
ETH HG F 26.5
Maathuis
Combinatorial Optimization (2)Tu, 13.15-15.00
ETH HG F 26.5
Zenklusen
Complexity and Simplicity of Optimization Problems (2)Mo, 14.15-16.00
ETH HG G 19.1
Nesterov
Computational Methods for Quantitative Finance: PDE Methods (3)We, 13.15-15.00
ETH HG D 1.2
Fr, 13.15-14.00
ETH HG D 1.2
Schwab
Computational Quantum Physics (2)Tu, 10.15-12.00
ETH HIT H 42
Conformal Field Theory (2)Tu, 09.15-11.00
ETH HIT F 32
Gaberdiel
Convex Optimization (2)Th, 15.00-17.00
Y22F62
Baes
Credit loss portfolios and large deviations (2)We, 13.00-14.45
Y27G28
We, 15.00-17.00
Y27H46
Nikeghbali
Cryptography (3)Tu, 15.00-17.00
Y27H12
We, 08.15-10.00
Y27H12
Th, 15.00-17.00
Y27H12
Rosenthal
Differential Geometry II (3)Mo, 13.15-15.00
ETH HG E 1.1
We, 16.15-18.00
ETH HG F 5
Ilmanen
Epsilon Factors of Connections and I-Adic Sheaves (2)Mo, 10.15-12.00
ETH HG G 26.1
Fresan
Ergodic Theory and … (Part II) (3)Tu, 13.15-15.00
ETH HG G 5
We, 13.15-15.00
ETH HG F 26.5
Einsiedler
Functional Analysis II (3)Mo, 10.15-12.00
ETH HG G 5
Th, 13.15-15.00
ETH HG G 5
Einsiedler
Geometric Integer Programming (2)Th, 13.15-15.00
ETH HG G 26.3
Weismantel
Gromov hyperbolic spaces (3)We, 10.15-12.00
Y27H28
Th, 10.15-12.00
Y27H28
Th, 13.00-14.45
Y27H12
Schroeder
Harmonic Analysis: Theory and Applications in Advanced Signal Processing (2)Tu, 10.15-12.00
ETH ETZ E 7
Bölcskei
Integral Equations - Theory and Numerical Treatment (3)Tu, 08.00-09.45
Y27H46
Tu, 10.15-12.00
Y27H46
Fr, 10.15-12.00
Y27H46
Sauter
Introduction to General Relativity and Gauge Theories for Mathematicians (3)Th, 10.15-12.00
Y27H25
Fr, 10.15-12.00
Y35F32
Latini
Introduction to General Relativity and Gauge Theories for Mathematicians (3)Th, 10.15-12.00
Y27H25
Fr, 10.15-12.00
Y35F32
Latini
Introduction to Geometric Measure Theory (2)Fr, 10.15-12.00
ETH NO D 11
Mondino
Introduction to Harmonic Analysis (1)We, 08.15-10.00
ETH HG G 26.5
Sohinger
Introduction to KAM THEORY (2)We, 13.00-14.45
Y16G05
Montalto
Invariants of knots and 3-manifolds (3)We, 13.00-14.45
Y27H28
Fr, 08.00-09.45
Y27H46
Fr, 13.00-14.45
Y27H46
Beliakova
Markov Chains: Mixing Times and Applications (1)Mo, 10.15-12.00
ETH ETZ F 91
Nolin
Mathematical aspects of classical statistical mechanics (3)Mo, 10.15-12.00
Y27H46
Th, 13.00-14.45
Y27H46
Porta
Mixed Models for Correlated Data (1)Tu, 09.00-11.00
Y27H35/36
Tu, 11.15-12.00
Y27H35/36
Hothorn
Multivariate Extreme Value Theory and Max-Stable Processes (2)We, 13.15-15.00
ETH HG D 5.2
Koch
Navier Stokes equations (3)We, 15.00-17.00
Y27H12
Th, 15.00-17.00
Y13L18/34
Fr, 13.00-14.45
Y27H12
De Lellis
Numerical Analysis o Stochastic Partial Differential Equations (2)We, 10.15-12.00
ETH HG G 26.3
Th, 10.15-12.00
ETH HG G 26.3
Jentzen
Numerical Methods for Hyperbolic Partial Differential Equations (3)Mo, 13.15-15.00
ETH HG F 26.5
Tu, 15.15-17.00
ETH HG F 26.5
Mishra
Numerical methods for linear time dependent partial differential equations (2)Tu, 13.00-14.45
Y27H12
Th, 10.15-12.00
Y27H12
Abgrall
Quantitative Risk Management (2)Th, 10.15-12.00
ETH HG G 3
Embrechts
Quantum Field Theory II (3)Tu, 13.15-14.00
ETH HCI J 3
Fr, 09.15-11.00
ETH HCI J 7
Isidori
Quantum Mechanics via Symplectic Geometry (2)Mo, 10.15-12.00
ETH HG D 7.2
Merry
Regularity Methods in Combinatorics (2)Fr, 10.15-12.00
ETH HG G 43
Anel
Selected Topics in Probability (2)Fr, 10.15-12.00
ETH HG F 26.5
Sznitman
Stochastic Loss Reserving Methods (1)We, 16.15-18.00
ETH HG E 22
Dahms
Survival Analysis (1)We, 09.00-11.00
Y27H35/36
We, 11.15-12.00
Y27H35/36
Hothorn
Symmetric Spaces (3)We, 10.15-12.00
ETH HG G 26.5
Fr, 10.15-12.00
ETH HG G 26.5
Lang
Topics in Analysis on Metric Spaces (2)Mo, 15.15-17.00
ETH HG E 1.1
Schioppa
Topics in Noncommutative Geometry (2)We, 08.15-10.00
ETH HG G 26.1
Felder
Übung Brownian Motion and Stochastic Calculus ()Fr, 08.15-09.00
ETH HG E 21
Fr, 09.15-10.00
ETH HG E 21
Fr, 11.15-12.00
ETH HG E 22
Fr, 12.15-13.00
ETH HG E 22
Teichmann
Übung Combinatorial Optimization ()Th, 16.15-17.00
ETH ML J 37.1
Zenklusen
Übung Computational Methods for Quantitative Finance: PDE Methods ()Fr, 14.15-15.00
ETH HG D 1.2
Schwab
Übung Computational Quantum Physics ()Tu, 12.15-14.00
ETH HIT H 51
Troyer
Übung Conformal Field Theory ()Tu, 11.15-12.00
ETH HIT F 32
Gaberdiel
Übung Differential Geometry II ()Fr, 08.15-10.00
ETH HG E 1.1
Fr, 10.15-12.00
ETH HG E 1.1
Ilmanen
Übung Funktional Analysis II ()Mo, 09.15-10.00
ETH HG F 26.3
Einsiedler
Übung Geometric Integer Programming ()Fr, 09.15-10.00
ETH HG G 26.3
Weismantel
Übung Harmonic Analysis: Theory & Applications in Advanced Signal Processing ()Tu, 08.15-10.00
ETH ETZ E 7
Bölcskei
Übung Numerical Methods for Hyperbolic Partial Differential Equations ()Mo, 15.15-16.00
ETH HG F 26.5
Mishra
Übung Quantum Field Theory II ()Fr, 11.15-13.00
ETH HCI F 8
Fr, 15.15-17.00
ETH HCI D 2
Isidori
Übung Variational Methods in Geometric Analysis ()Th, 14.15-15.00
ETH HG G 26.1
Struwe
Variational Methods in Geometric Analysis (3)Mo, 10.15-12.00
ETH HG G 43
Th, 10.15-12.00
ETH HG G 43
Struwe
Vectorial variational problems and microstructure (2)We, 13.00-14.45
Y27H25
Ghiraldin

Additional Courses: see semester program of ETH and UZH