Remark

The credits (shown in brackets) for ETH courses with the ending -DRL as for all UZH courses are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate (in case they don't take the course via a Foundations of D-Math module and do the examination). Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules. Booking courses via a Foundations of D-Math module gives 3 credits, regardless of the specific course.

 

 

FS 13
Title (Credits)Time & PlaceInstructor
Algebraische Geometrie II (9)Mo, 10.15-12.00
Y27H12
Tu, 10.15-12.00
Y27H12
Ayoub
An Introduction to the Modelling of Extremes ()We, 13.15-15.00
ETH HG D 5.2
Embrechts
Aspects of Computer Algebra (6)Tu, 13.00-14.45
Y27H12
Tu, 15.00-17.00
Y27H52
We, 15.00-17.00
Y27H52
Fontein
Brownian Motion and Stochastic Calculus ()Tu, 14.15-15.00
ETH HG D 3.2
We, 10.15-12.00
ETH HG D 7.2
Fr, 10.15-12.00
ETH HG E 41
Sznitman
Computational Methods for Quantitative Finance: PDE Methods ()We, 13.15-15.00
ETH HG F 3
Fr, 13.15-14.00
ETH HG F 5
Fr, 14.15-15.00
ETH HG F 5
Barth
Convergence of random variables and large deviations (5)Tu, 13.00-14.45
Y27H25
We, 15.00-15.45
Y27H12
Méliot
Convex Optimization ()Tu, 10.15-12.00
ETH HG D 7.1
Th, 15.15-16.00
ETH HG G 26.5
Baes
Coulomb Systems and Ginzburg-Landau Vortices ()Th, 10.15-12.00
ETH HG G 43
Serfaty
Differential forms in algebraic topology (9)Mo, 10.15-12.00
Y27H12
We, 10.15-12.00
Y27H12
Th, 10.15-12.00
Y27H26
Arias Abad
Dynamics and Orbits on Homogeneous Spaces ()Tu, 10.15-12.00
ETH HG E 41
Th, 08.15-10.00
ETH HG G 26.5
Einsiedler
Economic Theory of Financial Markets ()Mo, 16.15-18.00
ETH HG D 1.1
Wüthrich
Filter Theory - Theory and Applications ()We, 15.15-18.00
ETH HG D 3.1
We, 18.15-19.00
ETH HG D 3.1
Teichmann
G.R.avity and beyond (6)Tu, 10.15-12.00
Y27H12
Th, 10.15-11.00
Y27H46
Th, 11.15-12.00
Y27H46
Latini
Harmonic Analysis (5)Mo, 13.00-14.45
Y27H12
We, 16.00-17.00
Y27H12
Maples
Harmonic Analysis: Theory and Applications in Advanced Signal Processing ()Tu, 08.15-10.00
ETH
Tu, 10.15-12.00
ETH
Bölcskei
Invariants of knots and links FS13 (9)Mo, 13.00-15.00
Y27H46
Tu, 08.00-09.45
Y27H25
Fr, 08.00-09.45
Y27H25
Beliakova
Lie Groups II ()We, 10.15-12.00
ETH HG E 3
Fr, 10.15-12.00
ETH HG F 3
Kowalski
Mathematical aspects of anomalies in quantum field theories II (2)Starts 10.4.2013; Wed 10.15-12.00; room: 27-H-26
Monnier
Measured Group Theory ()Tu, 13.15-15.00
ETH HG F 26.3
Björklund
Mixed Models for Correlated Data (3)Vorlesungsstart: 9.4.13. VL: Di von 9 - 11 Uhr, Raum 27-H-35/36
Vorlesungsstart: 9.4.13. UE: Di von 11.15 - 12 Uhr, Raum 27-H-35
Hothorn
Modular Forms ()Th, 15.15-17.00
ETH HG G 5
Th, 17.15-18.00
ETH HG G 5
Toth
Morse theory (7)We, 13.00-14.45
Y27H35/36
We, 15.00-15.45
Y27H35/36
Fr, 09.00-11.00
Y27H35/36
Fr, 11.15-12.00
Y27H35/36
Farber
Nonlinear Dynamics and Chaos II ()We, 10.15-12.00
ETH
Th, 16.15-17.00
ETH ML J 34.3
Haller
Numerical Analysis of Stochastic Partial Differential Equations ()We, 10.15-12.00
ETH HG G 26.3
Th, 10.15-12.00
ETH HG G 26.3
Lang
Numerical Methods for Hyperbolic Partial Differential Equations ()Mo, 13.15-15.00
ETH HG G 26.1
Mo, 15.15-16.00
ETH HG G 26.1
We, 08.15-10.00
ETH HG G 26.1
Mishra
Prime Numbers II ()Mo, 13.15-15.00
ETH HG G 26.5
Th, 14.15-15.00
ETH HG G 26.5
Kowalski
Quantitative Risk Management ()Th, 10.15-12.00
ETH HG G 3
Embrechts
Quantum Field Theory II ()Tu, 13.15-14.00
ETH HCI F 8
We, 15.15-17.00
ETH HCI F 8
Fr, 09.15-11.00
ETH HCI F 8
Beisert
Selected Topics from Diophantine Geometry ()Tu, 10.15-12.00
ETH HG D 7.2
Th, 08.15-10.00
ETH HG D 7.2
Wüstholz
Stochastic simulation (6)Tu, 08.00-09.45
Y27H46
We, 08.00-09.45
Y27H25
Döring
Symplectic Topology ()Mo, 10.15-12.00
ETH HG G 26.5
Th, 13.15-15.00
ETH HG E 1.2
Salamon
Topological Quantum Field Theory (2)Th, 13.00-14.45
Y27H25
Mnev

Additional Courses: see semester program of ETH and UZH