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Throughout this talk consider
@ T € (0,00), stochastic basis (2, F, P, (Fi):c(0,7])
@ non-trivial separable Hilbert spaces H and U,
@ idy-cylindrical (F)ycpo,r-Wiener process (Wi).e(o,7)-
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Stochastic wave equations

Consider the case H = U = L?((0,1);R) and
o f,be C(R,R),
® &= (&.&) € Hy((0,1);R) x H,
@ a mild solution X : [0,7] x Q@ — H of

Kilw) = LX) + F(Xi(2)) + b(X()) Wila)

with Xo(z) = &(x) and Xo(z) = & (x) fort € [0,T7], z € (0,1).
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The hyperbolic Anderson model

Consider the case H = U = L?((0,1);R) and
@ f,be CP°(R,R) satisfying f = 0 and b(x) = « for all z € R,
® & =(%,&1) € Hy((0,1);R) x H,
@ a mild solution X : [0,7] x Q — H of

Xi(z) = Lo Xo(x) + Xo(2) Wi(z)

with Xo(z) = &(x) and Xo(z) = & (x) fort € [0,T], z € (0,1).
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Abstract formulation

Consider
@ an orthonormal basis {e, }nen € H of H,
@ an increasing sequence {\, },»en C (0, 00),
@ the linear operator A: D(A) C H — H which satisfies that
D(A)={ve H: Y, cxlAnlen, v)ul’ < oo} and

Vv e D(A): Av= Z —n(en, V) men,
neN
@ a family of interpolation spaces H,, r € R, associated to — A,

@ the family of Hilbert spaces H, = H./, x Hyj,_1/5, 7 € R,

@ the linear operator A: D(A) C Hy — Hj which satisfies that
D(A)=H; andV(v,w) e H;: A(v,w) = (w, Av),

@ ¢ € Hy, F e Lip’(Hy, Hy), B € Lip®(Hy, Ly (U, Hy)),
@ a mild solution X = (X, X): [0,7] x @ — H, of

dX, = [AX, + F(X,)]dt + B(X,)dW,, te[0,T], Xog=¢
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Strong and weak convergence

Recall
e X =(X,X):[0,7] x Q — Hy is a mild solution of

dX, = [AX, + F(X,)]dt + B(X,)dW,;, te€[0,T], Xo=¢
and consider
@ approximation processes X : [0, 7] x Q — Hy, N € N, of X.
Strong convergence rates

E[IXr - X¥|f,])"” NeN,
are well understood. Weak convergence rates

have been investigated for about 12 years and are far
away from being well understood.
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Weak convergence results in the literature

@ Hausenblas 2010 u. comput. Appl. Math.

@ Kovacs, Lindner & Schilling 2014 axiv
@ Kovacs, Larsson & Lindgren 2012 arr
@ Kovacs, Larsson & Lindgren 2013 arr
@ Wang 2015 4. sci. comput.

All of the above mentioned references assume that B is constant.
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Main setting

Recall

© H,=H, X Hyy_1pp, 7 €R,

@ ¢ € Hy, F € Lip®(Hy, Hy), B € Lip®(Hy, Lo (U, Hy)),
and consider

® {Pn}nenufoo} € L(Ho) with V(v, w) € Hy:

Py (v,w) = (X0 (en, v)ren, Sn_y (ens w)ien),
@ mild solutions X: [0, 7] x Q — Py (Hy) of

AXY = [PyAXY + PyF(XY)dt + PyB(XY)dw,

with X' =Py (¢) fort € [0,7], N € NU {co}.

Weak convergence rates for semilinear stochastic wave equations with multiplicative noise 8/11



Main result

Theorem (Jacobe de Naurois, Jentzen & W 2015)

Let0 < ~v,7/2< p <+,0<p<~andassume that
(—A)=P € L1(Hy), £ € Hy, Flg, € Lip’(H,, H,),
Blu, € Lip’(H,, Ly(U, H,) N L(U, Hy)),

F‘OTGR H, € Cg(ﬂreR H, H),

B|n, .1, € C3(N,er Hr, L2(U, Hy)), and

IF” () (v1, v2) | g, + 1B (@) (01, v2)ll L, 7:11,)
< o0

sup

xeﬂrER Hr,
v1,02€( ), er Hr\{0}

o1 lleg, 02|,

Then3C >0: VN € N,V € C3(Ho,R):

E[p(X$)] - E[p(X¥)]| < C- (An)*.
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Comments on the main result

Proof uses
@ the Kolmogorov equation,
@ the Holder inequality for Schatten norms,
@ and the mild 1t6 formula.

Essentially sharp rate:
@ ThereexistU, A, F, B, ¢: Ve >0:3C >0: VN € N:

E[o(X59)] — E[p(XY)]| > C - ()P,
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Corollary (Hyperbolic Anderson model; Jacobe de Naurois,

Jentzen & W 2015)

Let H = L?((0,1);R), ¢ € CZ(H,R),
&€= (&,&) € HE((0,1);R) x H, foreveryn € N let
en(-) = V2sin(nn(-)) € H and for every N € NU {oo} let
Pn() =N (en, )y en € L(H) and let XV : [0,T] x Q@ — Py (H)
be a mild solution of
with Xo(z) = (Pn&)(z) and Xo(z) = (Pné&1)(x) fort € [0,T),
€ (0,1). ThenVe >0:3C >0: VN € N:

IE[p(X%°)] —E[p(XF)]| < C- N1
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