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Electromagnetic scattering problems
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Maxwell’s equations

Faraday’s law of induction
∂B
∂t

+ curl E = 0

Gauss’ law divD = ρ

Ampere’s circuital law − ∂D
∂t

+ curlH = J

Gauss’ law for magnetism divB = 0.

where

E:
D:
J:

electric field
electric displacement
current density

B:
H:
ρ:

magnetic field
magnetic induction
charge density



Time-harmonic Maxwell equations

If we suppose the fields to be of the form

E(x, t) = Re
{
Ê(x)e−iωt

}
with e−iωt time dependence where ω > 0, the time-dependent
Maxwell equations reduce to the time-harmonic system

−iω B̂ + curl Ê = 0

div D̂ = ρ̂

iω D̂ + curl Ĥ = Ĵ

div B̂ = 0.



Assumptions

Ω+ consists of homogeneous, isotropic material. In this case
we have

D = εE B = µH,

where ε and µ are constants and are called, respectively, the
electric permittivity and magnetic permeability.

Ω− is a three-dimensional perfectly conducting object with
regular bounded surface Γ.

No external sources i.e. J = 0 and ρ = 0.



Exterior scattering problem

Find (E,H) such that

−ε∂E
∂t

+ curlH = 0 in Rt × Ω+

µ
∂H
∂t

+ curl E = 0 in Rt × Ω+

divE = divH = 0 in Rt × Ω+

with boundary conditions

n× E = −n× Einc on Rt × Γ

and initial conditions

E(t, x) = H(t, x) = 0 for t ≤ 0 and x ∈ Ω+.
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Integral representation (1)

For y ∈ Ω+ the solution can be expressed in terms of a retarded
boundary integral

E(t, y) = −µ
∫ t

0

∫
Γ
k(t − τ, x− y) ∂τ j(τ, x) dΓx dτ

− 1
ε
∇
∫ t

0

∫
Γ
k(t − τ, x− y) q(τ, x) dΓx dτ

where j is the unknown surface current density, q is the unknown
surface charge density and the kernel k is given by

k(t, z) :=
δ(t −√εµ‖z‖)

4π‖z‖ .



Integral representation (2)

The unknown boundary densities j and q are determined via the
boundary condition. Let ∇Γ denote the surface gradient and let
y → Γ. Then we obtain the equation

µ

∫ t

0

∫
Γ
k(t − τ, x− y)(ny × ny × ∂τ j(τ, x)) dΓxdτ

− 1
ε
∇Γ

∫ t

0

∫
Γ
k(t − τ, x− y)q(τ, x) dΓxdτ = −ny × c(t, y)

for t ∈ R and y ∈ Γ where c = −n× Einc.

Remark: j and q are related by the law of conservation of charge

∂q
∂t

+ divΓj = 0.
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Convolution quadrature

For the time discretization of the above boundary integral we
employ Lubich’s convolution quadrature method. Consider

V (∂t)φ(t) :=

∫ t

0
v(t − τ)φ(τ) dτ, 0 ≤ t ≤ T

where V denotes the Laplace transform of v . Introducing a time
step ∆t = T/N, N > 0 and tn = n∆t we seek an approximation of
the form

V (∂∆t
t )φ(tn) :=

n∑
j=0

ω∆t
n−j(V )φ(tj) for n = 0, . . . ,N.

Remark. In our application v is a parameter dependent integral
operator.
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Convolution quadrature

Convolution quadrature is based on the Laplace transform and
makes use of the Laplace inversion formula

v(t) =
1
2πi

∫
σ+iR

V (s)est ds.

Inserting the above formula into the convolution integral leads to

V (∂t)φ(t) =
1
2πi

∫
σ+iR

V (s)

∫ t

0
es(t−τ)φ(τ) dτds.

The inner integral is the solution of the ordinary differential
equation

y ′(t) = sy(t) + φ(t), y(0) = 0.
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Convolution quadrature

We approximate the solution of this ODE by a linear multistep
method of the form

k∑
j=0

αj yn+j−k(s) = ∆t
k∑

j=0

βj(s yn+j−k(s) + φ((n + j − k)∆t))

with yn(s) ≈ y(s, tn) and y−k(s) = . . . = y−1(s) = 0. We also
assume that φ equals zero on the negative real axis.

It turns out that a sub-class of A-stable methods are desirable.
Candidates include:

Backward Euler
BDF2
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Convolution quadrature

Multiplying by ξn, summing over n from 0 to ∞ and rearranging
terms leads to the formal power series

∞∑
n=0

ynξ
n =

(
γ(ξ)

∆t
− s
)−1 ∞∑

n=0

φ(n∆t)ξn

where γ(ξ) :=
Pk

j=0 αjξ
k−jPk

j=0 βjξk−j is the quotient of the generating

polynomials of the underlying multistep method.

For the BDF2 scheme we have

γ(ξ) =
1
2
ξ2 − 2ξ +

3
2
.



Convolution quadrature

Therefore we get

∞∑
n=0

V (∂t)φ(tn)ξn ≈ 1
2πi

∫
σ+iR

V (s)

(
γ(ξ)

∆t
− s
)−1 ∞∑

n=0

φ(n∆t)ξn ds

= V
(
γ(ξ)

∆t

) ∞∑
n=0

φ(n∆t)ξn

by Cauchy’s integral formula. Expanding V
(
γ(ξ)
∆t

)
in a formal

Taylor series at ξ = 0 defines coefficients ω∆t
m (V ) s.t.

V
(
γ(ξ)

∆t

)
=
∞∑

m=0

ω∆t
m (V ) ξm.



Convolution quadrature

This finally leads to a discrete convolution

V (∂∆t
t )φ(tn) =

n∑
j=0

ω∆t
n−j(V )φ(tj)

where n = 0, 1, . . . ,N.

In our application we want to find the unknown density function φ
s.t.

V (∂t)φ(t) = g(t) for t ∈ [0,T ]

Using convolution quadrature we approximate the solution by
solving

n∑
j=0

ω∆t
n−j(V )φ∆t(tj) = g(tn)

for n = 0, 1, . . . ,N.
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Convolution quadrature

We follow the approach of Banjai and Sauter and transfer this
Toeplitz system to the Fourier image.

In order to do that we represent the quadrature weights as a
contour integral

ω∆t
m (V ) =

1
2πi

∮
C

V (γ(ξ)/∆t)

ξm+1 dξ

where C is a circle centered at the origin of radius ρ < 1. Next, we
apply the trapezoidal rule and get the approximate weights

ω∆t,ρ
m (V ) =

ρ−m

N + 1

N∑
l=0

V (sl )ζ lm
N+1

with ζN+1 = e
2πi
N+1 and sl = γ

(
ρζ−l

N+1

)
/∆t.



Convolution quadrature

Thus, we approximate the solution by solving

n∑
j=0

ω∆t,ρ
n−j (V )φ∆t,ρ(tj) = g(tn)

for n = 0, . . . ,N. This is equivalent to

ρ−n

N + 1

N∑
l=0

(
V (sl )φ̂

∆t,ρ
l

)
ζ ln
N+1 = g(tn)

for n = 0, . . . ,N, where φ̂∆t,ρ
l is a scaled discrete Fourier transform

φ̂∆t,ρ
l =

N∑
j=0

ρjφ∆t,ρ(tj)ζ
−lj
N+1.



Convolution quadrature

We apply the scaled discrete Fourier transform on both sides and
get the following decoupled system of time-independent problems

V (sl )φ̂
∆t,ρ
l = ĝl

for l = 0, . . . ,N.

We obtain the time-domain solution by applying the scaled inverse
transform

φ∆t,ρ(tn) =
ρ−n

N + 1

N∑
l=0

φ̂∆t,ρ
l ζnl

N+1.



Convolution quadrature
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A range of complex frequencies sl for N = 256,T = 2 and
ρN = 10−4. In this case we have Re(sl ) > 4.6 for l = 1, . . . ,N.



Convolution quadrature for Maxwell’s equations

We have to solve the boundary integral equation

µ

∫ t

0

∫
Γ
k(t − τ, x− y)(ny × ny × ∂τ j(τ, x)) dΓxdτ

− 1
ε
∇Γ

∫ t

0

∫
Γ
k(t − τ, x− y)q(τ, x) dΓxdτ = −ny × c(t, y)

for t ∈ R and y ∈ Γ where c = −n× Einc.

In the next step we will use the relation

q(t, x) = −
∫ t

0
divΓj(τ, x) dτ

and employ the Laplace transform to make this equation suitable
for convolution quadrature.



Convolution quadrature for Maxwell’s equations

The boundary integral equation is equivalent to

µ

∫ t

0

∫
Γ

L−1 {s K (s, x− y)} (t − τ) [ny × ny × j(τ, x)] dΓxdτ

+
1
ε
∇Γ

∫ t

0

∫
Γ

L−1
{

1
s

K (s, x− y)

}
(t − τ) divΓj(τ, x) dΓxdτ = −ny × c

where K is the Laplace transform of the time domain kernel
function

K (s, z) := L{k} (s, z) =
e−s
√
εµ‖z‖

4π‖z‖



Convolution quadrature for Maxwell’s equations

This representation allows us to apply convolution quadrature and
the derived formula. Thus we have solve the following system of
time-harmonic problems at different complex wavenumbers sl

µ

∫
Γ
sl K (sl , x− y) [ny × ny × ĵl (x)] dΓx

+
1
ε
∇Γ

∫
Γ

1
sl

K (sl , x− y) divΓ ĵl (x) dΓx = −ny × ĉl (y)

for all y ∈ Γ and l = 0, . . . ,N.



Involved Sobolev spaces

We define the following Hilbert space and its associated graph norm

H(curl,Ω) := {v ∈ L2(Ω)3, curl v ∈ L2(Ω)3}

‖v‖curl = (‖v‖20 + ‖curl v‖20)1/2

where ‖ · ‖0 denotes the usual norm in L2(Ω)3. Furthermore we
introduce the following spaces on Γ:

H−1/2(divΓ, Γ) :=
{
v ∈ H−1/2(Γ), n . v = 0, divΓv ∈ H−1/2(Γ)

}
H−1/2(curlΓ, Γ) :=

{
v ∈ H−1/2(Γ), n . v = 0, curlΓv ∈ H−1/2(Γ)

}



Trace theorem

Theorem

The trace mapping

γ× : H(curl,Ω) → H−1/2(divΓ, Γ)

v 7→ [v× n]|Γ

is continuous and surjective. Moreover, there exists a continuous
lifting for the trace operator in H(curl,Ω).

Lemma

If we identify L2(Γ) with its dual space, H−1/2(divΓ, Γ) is the dual
space of H−1/2(curlΓ, Γ) and conversely.
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Norms

The Lemma above shows that a norm of H−1/2(divΓ, Γ) is given by

‖u‖−1/2,div = sup
ϕ∈H−1/2(curlΓ,Γ)

∣∣∫
Γ u .ϕ dΓ

∣∣
‖ϕ‖−1/2,curl

.

A norm of H−1/2(curlΓ, Γ) is given by

‖v‖−1/2,curl = sup
ϕ∈H−1/2(divΓ,Γ)

∣∣∫
Γ v .ϕ dΓ

∣∣
‖ϕ‖−1/2,div

.



Variational formulation

Define R(s) : H−1/2(divΓ, Γ)→ H−1/2(curlΓ, Γ) by

R(s)j :=µ

∫
Γ
s K (sl , x− y) [ny × ny × j(x)] dΓx

+
1
ε
∇Γ

∫
Γ

1
s

K (s, x− y) divΓj(x) dΓx

An appropriate variational formulation for the system of
time-harmonic Maxwell equations is given by:

Find ĵl ∈ H−1/2(divΓ, Γ) s.t. for all q ∈ H−1/2(divΓ, Γ) holds∫
Γ

(
−R(sl )̂jl (y),q(y)

)
dΓ =

∫
Γ

(
Ê

inc
l (y),q(y)

)
dΓ

for l = 0, . . . ,N.



Basic estimates

Theorem

For s ∈ C with Re(s) ≥ σ0 > 0 the sesquilinear form is continuous
and coercive on H−1/2(divΓ, Γ)×H−1/2(divΓ, Γ). In particular

Re
(∫

Γ
ϕ . (−R(s)ϕ) dΓ

)
≥ C

1
|s|2 ‖ϕ‖

2
−1/2, div

for all ϕ ∈ H−1/2(divΓ, Γ).

For the inverse operator R(s)−1 we have

‖R(s)−1‖ ≤ C̃ |s|2

where C̃ depends on σ0.



Current and Future work

Implementation of the method

Error analysis

Numerical tests


