Convolution quadrature for time-dependent Maxwell equations

Alexander Veit
Institute of Mathematics
University of Zurich

August 2009

Faraday's law of induction
Gauss' law
Ampere's circuital law
Gauss' law for magnetism
where
E: electric field
D: electric displacement
J: current density
$\frac{\partial \mathbf{B}}{\partial t}+\operatorname{curl} \mathbf{E}=\mathbf{0}$ $\operatorname{div} \mathbf{D}=\rho$
$-\frac{\partial \mathbf{D}}{\partial t}+\mathbf{c u r l} \mathbf{H}=\mathbf{J}$ $\operatorname{div} B=0$.

B: magnetic field
H : magnetic induction
ρ : charge density

If we suppose the fields to be of the form

$$
\mathbf{E}(\mathbf{x}, t)=\operatorname{Re}\left\{\hat{\mathbf{E}}(\mathbf{x}) e^{-i \omega t}\right\}
$$

with $e^{-i \omega t}$ time dependence where $\omega>0$, the time-dependent Maxwell equations reduce to the time-harmonic system

$$
\begin{aligned}
-i \omega \hat{\mathbf{B}}+\operatorname{curl} \hat{\mathbf{E}} & =0 \\
\operatorname{div} \hat{\mathbf{D}} & =\hat{\rho} \\
i \omega \hat{\mathbf{D}}+\operatorname{curl} \hat{\mathbf{H}} & =\hat{\mathbf{J}} \\
\operatorname{div} \hat{\mathbf{B}} & =0 .
\end{aligned}
$$

■ Ω_{+}consists of homogeneous, isotropic material. In this case we have

$$
\mathbf{D}=\varepsilon \mathbf{E} \quad \mathbf{B}=\mu \mathbf{H},
$$

where ε and μ are constants and are called, respectively, the electric permittivity and magnetic permeability.

■ Ω_{-}is a three-dimensional perfectly conducting object with regular bounded surface Γ.

- No external sources i.e. $\mathbf{J}=\mathbf{0}$ and $\rho=0$.

Find (E, H) such that

$$
\begin{aligned}
-\varepsilon \frac{\partial \mathbf{E}}{\partial t}+\operatorname{curl} \mathbf{H}=\mathbf{0} & \text { in } \mathbb{R}_{t} \times \Omega_{+} \\
\mu \frac{\partial \mathbf{H}}{\partial t}+\operatorname{curl} \mathbf{E}=\mathbf{0} & \text { in } \mathbb{R}_{t} \times \Omega_{+} \\
\operatorname{div} \mathbf{E}=\operatorname{div} \mathbf{H}=0 & \text { in } \mathbb{R}_{t} \times \Omega_{+}
\end{aligned}
$$

Find (E, H) such that

$$
\begin{aligned}
-\varepsilon \frac{\partial \mathbf{E}}{\partial t}+\operatorname{curl} \mathbf{H}=\mathbf{0} & \text { in } \mathbb{R}_{t} \times \Omega_{+} \\
\mu \frac{\partial \mathbf{H}}{\partial t}+\operatorname{curl} \mathbf{E}=\mathbf{0} & \text { in } \mathbb{R}_{t} \times \Omega_{+} \\
\operatorname{div} \mathbf{E}=\operatorname{div} \mathbf{H}=0 & \text { in } \mathbb{R}_{t} \times \Omega_{+}
\end{aligned}
$$

with boundary conditions

$$
\mathbf{n} \times \mathbf{E}=-\mathbf{n} \times \mathbf{E}^{\text {inc }} \quad \text { on } \mathbb{R}_{t} \times \Gamma
$$

and initial conditions

$$
\mathbf{E}(t, \mathbf{x})=\mathbf{H}(t, \mathbf{x})=\mathbf{0} \quad \text { for } t \leq 0 \text { and } \mathbf{x} \in \Omega_{+} .
$$

Integral representation (1)

For $\mathbf{y} \in \Omega_{+}$the solution can be expressed in terms of a retarded boundary integral

$$
\begin{aligned}
\mathbf{E}(t, \mathbf{y})=-\mu & \int_{0}^{t} \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y}) \partial_{\tau} \mathbf{j}(\tau, \mathbf{x}) d \Gamma_{\mathbf{x}} d \tau \\
& -\frac{1}{\varepsilon} \nabla \int_{0}^{t} \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y}) q(\tau, \mathbf{x}) d \Gamma_{\mathbf{x}} d \tau
\end{aligned}
$$

where \mathbf{j} is the unknown surface current density, q is the unknown surface charge density and the kernel k is given by

$$
k(t, \mathbf{z}):=\frac{\delta(t-\sqrt{\varepsilon \mu}\|\mathbf{z}\|)}{4 \pi\|\mathbf{z}\|}
$$

Integral representation (2)

The unknown boundary densities \mathbf{j} and q are determined via the boundary condition. Let ∇_{Γ} denote the surface gradient and let $y \rightarrow \Gamma$. Then we obtain the equation

$$
\begin{aligned}
\mu \int_{0}^{t} & \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y})\left(\mathbf{n}_{\mathbf{y}} \times \mathbf{n}_{\mathbf{y}} \times \partial_{\tau} \mathbf{j}(\tau, \mathbf{x})\right) d \Gamma_{\mathbf{x}} d \tau \\
\quad & -\frac{1}{\varepsilon} \nabla_{\Gamma} \int_{0}^{t} \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y}) q(\tau, \mathbf{x}) d \Gamma_{\mathbf{x}} d \tau=-\mathbf{n}_{\mathbf{y}} \times \mathbf{c}(t, \mathbf{y})
\end{aligned}
$$

for $t \in \mathbb{R}$ and $\mathbf{y} \in \Gamma$ where $\mathbf{c}=-\mathbf{n} \times \mathbf{E}^{\mathrm{inc}}$.

The unknown boundary densities \mathbf{j} and q are determined via the boundary condition. Let ∇_{Γ} denote the surface gradient and let $y \rightarrow \Gamma$. Then we obtain the equation

$$
\begin{aligned}
\mu \int_{0}^{t} & \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y})\left(\mathbf{n}_{\mathbf{y}} \times \mathbf{n}_{\mathbf{y}} \times \partial_{\tau} \mathbf{j}(\tau, \mathbf{x})\right) d \Gamma_{\mathbf{x}} d \tau \\
\quad & -\frac{1}{\varepsilon} \nabla_{\Gamma} \int_{0}^{t} \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y}) q(\tau, \mathbf{x}) d \Gamma_{\mathbf{x}} d \tau=-\mathbf{n}_{\mathbf{y}} \times \mathbf{c}(t, \mathbf{y})
\end{aligned}
$$

for $t \in \mathbb{R}$ and $\mathbf{y} \in \Gamma$ where $\mathbf{c}=-\mathbf{n} \times \mathbf{E}^{\mathrm{inc}}$.

Remark: \mathbf{j} and q are related by the law of conservation of charge

$$
\frac{\partial q}{\partial t}+\operatorname{div}_{\Gamma} \mathbf{j}=0
$$

For the time discretization of the above boundary integral we employ Lubich's convolution quadrature method. Consider

$$
V\left(\partial_{t}\right) \phi(t):=\int_{0}^{t} v(t-\tau) \phi(\tau) d \tau, \quad 0 \leq t \leq T
$$

where V denotes the Laplace transform of v. Introducing a time step $\Delta t=T / N, N>0$ and $t_{n}=n \Delta t$ we seek an approximation of the form

$$
V\left(\partial_{t}^{\Delta t}\right) \phi\left(t_{n}\right):=\sum_{j=0}^{n} \omega_{n-j}^{\Delta t}(V) \phi\left(t_{j}\right) \quad \text { for } n=0, \ldots, N
$$

For the time discretization of the above boundary integral we employ Lubich's convolution quadrature method. Consider

$$
V\left(\partial_{t}\right) \phi(t):=\int_{0}^{t} v(t-\tau) \phi(\tau) d \tau, \quad 0 \leq t \leq T
$$

where V denotes the Laplace transform of v. Introducing a time step $\Delta t=T / N, N>0$ and $t_{n}=n \Delta t$ we seek an approximation of the form

$$
V\left(\partial_{t}^{\Delta t}\right) \phi\left(t_{n}\right):=\sum_{j=0}^{n} \omega_{n-j}^{\Delta t}(V) \phi\left(t_{j}\right) \quad \text { for } n=0, \ldots, N
$$

Remark. In our application v is a parameter dependent integral operator.

Convolution quadrature is based on the Laplace transform and makes use of the Laplace inversion formula

$$
v(t)=\frac{1}{2 \pi i} \int_{\sigma+i \mathbb{R}} V(s) e^{s t} d s
$$

Inserting the above formula into the convolution integral leads to

$$
V\left(\partial_{t}\right) \phi(t)=\frac{1}{2 \pi i} \int_{\sigma+i \mathbb{R}} V(s) \int_{0}^{t} e^{s(t-\tau)} \phi(\tau) d \tau d s
$$

Convolution quadrature is based on the Laplace transform and makes use of the Laplace inversion formula

$$
v(t)=\frac{1}{2 \pi i} \int_{\sigma+i \mathbb{R}} V(s) e^{s t} d s
$$

Inserting the above formula into the convolution integral leads to

$$
V\left(\partial_{t}\right) \phi(t)=\frac{1}{2 \pi i} \int_{\sigma+i \mathbb{R}} V(s) \int_{0}^{t} e^{s(t-\tau)} \phi(\tau) d \tau d s .
$$

The inner integral is the solution of the ordinary differential equation

$$
y^{\prime}(t)=s y(t)+\phi(t), y(0)=0
$$

We approximate the solution of this ODE by a linear multistep method of the form

$$
\sum_{j=0}^{k} \alpha_{j} y_{n+j-k}(s)=\Delta t \sum_{j=0}^{k} \beta_{j}\left(s y_{n+j-k}(s)+\phi((n+j-k) \Delta t)\right)
$$

with $y_{n}(s) \approx y\left(s, t_{n}\right)$ and $y_{-k}(s)=\ldots=y_{-1}(s)=0$. We also assume that ϕ equals zero on the negative real axis.

We approximate the solution of this ODE by a linear multistep method of the form

$$
\sum_{j=0}^{k} \alpha_{j} y_{n+j-k}(s)=\Delta t \sum_{j=0}^{k} \beta_{j}\left(s y_{n+j-k}(s)+\phi((n+j-k) \Delta t)\right)
$$

with $y_{n}(s) \approx y\left(s, t_{n}\right)$ and $y_{-k}(s)=\ldots=y_{-1}(s)=0$. We also assume that ϕ equals zero on the negative real axis.

It turns out that a sub-class of A-stable methods are desirable. Candidates include:

- Backward Euler
- BDF2

Multiplying by ξ^{n}, summing over n from 0 to ∞ and rearranging terms leads to the formal power series

$$
\sum_{n=0}^{\infty} y_{n} \xi^{n}=\left(\frac{\gamma(\xi)}{\Delta t}-s\right)^{-1} \sum_{n=0}^{\infty} \phi(n \Delta t) \xi^{n}
$$

where $\gamma(\xi):=\frac{\sum_{j=0}^{k} \alpha_{j} \xi^{k-j}}{\sum_{j=0}^{k} \beta_{j} \xi^{k-j}}$ is the quotient of the generating polynomials of the underlying multistep method.

For the BDF2 scheme we have

$$
\gamma(\xi)=\frac{1}{2} \xi^{2}-2 \xi+\frac{3}{2}
$$

Therefore we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} V\left(\partial_{t}\right) \phi\left(t_{n}\right) \xi^{n} & \approx \frac{1}{2 \pi i} \int_{\sigma+i \mathbb{R}} V(s)\left(\frac{\gamma(\xi)}{\Delta t}-s\right)^{-1} \sum_{n=0}^{\infty} \phi(n \Delta t) \xi^{n} d s \\
& =V\left(\frac{\gamma(\xi)}{\Delta t}\right) \sum_{n=0}^{\infty} \phi(n \Delta t) \xi^{n}
\end{aligned}
$$

by Cauchy's integral formula. Expanding $V\left(\frac{\gamma(\xi)}{\Delta t}\right)$ in a formal
Taylor series at $\xi=0$ defines coefficients $\omega_{m}^{\Delta t}(V)$ s.t.

$$
V\left(\frac{\gamma(\xi)}{\Delta t}\right)=\sum_{m=0}^{\infty} \omega_{m}^{\Delta t}(V) \xi^{m}
$$

This finally leads to a discrete convolution

$$
V\left(\partial_{t}^{\Delta t}\right) \phi\left(t_{n}\right)=\sum_{j=0}^{n} \omega_{n-j}^{\Delta t}(V) \phi\left(t_{j}\right)
$$

where $n=0,1, \ldots, N$.

This finally leads to a discrete convolution

$$
V\left(\partial_{t}^{\Delta t}\right) \phi\left(t_{n}\right)=\sum_{j=0}^{n} \omega_{n-j}^{\Delta t}(V) \phi\left(t_{j}\right)
$$

where $n=0,1, \ldots, N$.
In our application we want to find the unknown density function ϕ s.t.

$$
V\left(\partial_{t}\right) \phi(t)=g(t) \quad \text { for } t \in[0, T]
$$

Using convolution quadrature we approximate the solution by solving

$$
\sum_{j=0}^{n} \omega_{n-j}^{\Delta t}(V) \phi^{\Delta t}\left(t_{j}\right)=g\left(t_{n}\right)
$$

for $n=0,1, \ldots, N$.

We follow the approach of Banjai and Sauter and transfer this Toeplitz system to the Fourier image.
In order to do that we represent the quadrature weights as a contour integral

$$
\omega_{m}^{\Delta t}(V)=\frac{1}{2 \pi i} \oint_{C} \frac{V(\gamma(\xi) / \Delta t)}{\xi^{m+1}} d \xi
$$

where C is a circle centered at the origin of radius $\rho<1$. Next, we apply the trapezoidal rule and get the approximate weights

$$
\omega_{m}^{\Delta t, \rho}(V)=\frac{\rho^{-m}}{N+1} \sum_{l=0}^{N} V\left(s_{l}\right) \zeta_{N+1}^{l m}
$$

with $\zeta_{N+1}=e^{\frac{2 \pi i}{N+1}}$ and $s_{I}=\gamma\left(\rho \zeta_{N+1}^{-I}\right) / \Delta t$.

Thus, we approximate the solution by solving

$$
\sum_{j=0}^{n} \omega_{n-j}^{\Delta t, \rho}(V) \phi^{\Delta t, \rho}\left(t_{j}\right)=g\left(t_{n}\right)
$$

for $n=0, \ldots, N$. This is equivalent to

$$
\frac{\rho^{-n}}{N+1} \sum_{l=0}^{N}\left(V\left(s_{l}\right) \hat{\phi}_{l}^{\Delta t, \rho}\right) \zeta_{N+1}^{l n}=g\left(t_{n}\right)
$$

for $n=0, \ldots, N$, where $\hat{\phi}_{l}^{\Delta t, \rho}$ is a scaled discrete Fourier transform

$$
\hat{\phi}_{l}^{\Delta t, \rho}=\sum_{j=0}^{N} \rho^{j} \phi^{\Delta t, \rho}\left(t_{j}\right) \zeta_{N+1}^{-l j}
$$

We apply the scaled discrete Fourier transform on both sides and get the following decoupled system of time-independent problems

$$
V\left(s_{l}\right) \hat{\phi}_{l}^{\Delta t, \rho}=\hat{g}_{I}
$$

for $I=0, \ldots, N$.
We obtain the time-domain solution by applying the scaled inverse transform

$$
\phi^{\Delta t, \rho}\left(t_{n}\right)=\frac{\rho^{-n}}{N+1} \sum_{l=0}^{N} \hat{\phi}_{l}^{\Delta t, \rho} \zeta_{N+1}^{n l} .
$$

A range of complex frequencies $s_{\text {/ }}$ for $N=256, T=2$ and $\rho^{N}=10^{-4}$. In this case we have $\operatorname{Re}\left(s_{l}\right)>4.6$ for $I=1, \ldots, N$.

We have to solve the boundary integral equation

$$
\begin{aligned}
& \mu \int_{0}^{t} \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y})\left(\mathbf{n}_{\mathbf{y}} \times \mathbf{n}_{\mathbf{y}} \times \partial_{\tau} \mathbf{j}(\tau, \mathbf{x})\right) d \Gamma_{\mathbf{x}} d \tau \\
& \quad-\frac{1}{\varepsilon} \nabla_{\Gamma} \int_{0}^{t} \int_{\Gamma} k(t-\tau, \mathbf{x}-\mathbf{y}) q(\tau, \mathbf{x}) d \Gamma_{\mathbf{x}} d \tau=-\mathbf{n}_{\mathbf{y}} \times \mathbf{c}(t, \mathbf{y})
\end{aligned}
$$

for $t \in \mathbb{R}$ and $\mathbf{y} \in \Gamma$ where $\mathbf{c}=-\mathbf{n} \times \mathbf{E}^{\text {inc }}$.
In the next step we will use the relation

$$
q(t, \mathbf{x})=-\int_{0}^{t} \operatorname{div}_{\Gamma} \mathbf{j}(\tau, \mathbf{x}) d \tau
$$

and employ the Laplace transform to make this equation suitable for convolution quadrature.

The boundary integral equation is equivalent to

$$
\begin{aligned}
& \mu \int_{0}^{t} \int_{\Gamma} \mathcal{L}^{-1}\{s K(s, \mathbf{x}-\mathbf{y})\}(t-\tau)\left[\mathbf{n}_{\mathbf{y}} \times \mathbf{n}_{\mathbf{y}} \times \mathbf{j}(\tau, \mathbf{x})\right] d \Gamma_{\mathbf{x}} d \tau \\
& \quad+\frac{1}{\varepsilon} \nabla_{\Gamma} \int_{0}^{t} \int_{\Gamma} \mathcal{L}^{-1}\left\{\frac{1}{s} K(s, \mathbf{x}-\mathbf{y})\right\}(t-\tau) \operatorname{div}_{\Gamma} \mathbf{j}(\tau, \mathbf{x}) d \Gamma_{\mathbf{x}} d \tau=-\mathbf{n}_{\mathbf{y}} \times \mathbf{c}
\end{aligned}
$$

where K is the Laplace transform of the time domain kernel function

$$
K(s, \mathbf{z}):=\mathcal{L}\{k\}(s, \mathbf{z})=\frac{e^{-s \sqrt{\varepsilon \mu}\|\mathbf{z}\|}}{4 \pi\|\mathbf{z}\|}
$$

This representation allows us to apply convolution quadrature and the derived formula. Thus we have solve the following system of time-harmonic problems at different complex wavenumbers s_{l}

$$
\begin{aligned}
& \mu \int_{\Gamma} s_{l} K\left(s_{l}, \mathbf{x}-\mathbf{y}\right)\left[\mathbf{n}_{\mathbf{y}} \times \mathbf{n}_{\mathbf{y}} \times \hat{\mathbf{j}}_{/}(\mathbf{x})\right] d \Gamma_{\mathbf{x}} \\
& \quad+\frac{1}{\varepsilon} \nabla_{\Gamma} \int_{\Gamma} \frac{1}{s_{l}} K\left(s_{l}, \mathbf{x}-\mathbf{y}\right) \operatorname{div}_{\Gamma} \hat{\mathbf{j}}_{/}(\mathbf{x}) d \Gamma_{\mathbf{x}}=-\mathbf{n}_{\mathbf{y}} \times \hat{\mathbf{c}}_{/}(\mathbf{y})
\end{aligned}
$$

for all $y \in \Gamma$ and $I=0, \ldots, N$.

We define the following Hilbert space and its associated graph norm

$$
\begin{gathered}
\mathbf{H}(\text { curl }, \Omega):=\left\{\mathbf{v} \in L^{2}(\Omega)^{3}, \text { curl } \mathbf{v} \in L^{2}(\Omega)^{3}\right\} \\
\|\mathbf{v}\|_{\text {curl }}=\left(\|\mathbf{v}\|_{0}^{2}+\|\mathbf{c u r l} \mathbf{v}\|_{0}^{2}\right)^{1 / 2}
\end{gathered}
$$

where $\|\cdot\|_{0}$ denotes the usual norm in $L^{2}(\Omega)^{3}$. Furthermore we introduce the following spaces on Γ :

$$
\begin{aligned}
\mathbf{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right) & :=\left\{\mathbf{v} \in \mathbf{H}^{-1 / 2}(\Gamma), \mathbf{n} \cdot \mathbf{v}=0, \operatorname{div}_{\Gamma} \mathbf{v} \in H^{-1 / 2}(\Gamma)\right\} \\
\mathbf{H}^{-1 / 2}\left(\operatorname{curl}_{\Gamma}, \Gamma\right) & :=\left\{\mathbf{v} \in \mathbf{H}^{-1 / 2}(\Gamma), \mathbf{n} \cdot \mathbf{v}=0, \operatorname{curl}_{\Gamma} \mathbf{v} \in H^{-1 / 2}(\Gamma)\right\}
\end{aligned}
$$

Trace theorem

Theorem

The trace mapping

$$
\begin{aligned}
\gamma_{\times}: \boldsymbol{H}(\text { curl }, \Omega) & \rightarrow \boldsymbol{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right) \\
\boldsymbol{v} & \mapsto[\boldsymbol{v} \times \boldsymbol{n}]_{\mid \Gamma}
\end{aligned}
$$

is continuous and surjective. Moreover, there exists a continuous lifting for the trace operator in $\boldsymbol{H}($ curl, $\Omega)$.

Trace theorem

Theorem

The trace mapping

$$
\begin{aligned}
\gamma_{\times}: \boldsymbol{H}(\text { curl }, \Omega) & \rightarrow \boldsymbol{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right) \\
\boldsymbol{v} & \mapsto[\boldsymbol{v} \times \boldsymbol{n}]_{\mid \Gamma}
\end{aligned}
$$

is continuous and surjective. Moreover, there exists a continuous lifting for the trace operator in $\boldsymbol{H}($ curl, $\Omega)$.

Lemma

If we identify $L^{2}(\Gamma)$ with its dual space, $H^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)$ is the dual space of $\boldsymbol{H}^{-1 / 2}($ curl,$\Gamma)$ and conversely.

The Lemma above shows that a norm of $\mathbf{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)$ is given by

$$
\|\mathbf{u}\|_{-1 / 2, \text { div }}=\sup _{\varphi \in \mathbf{H}^{-1 / 2}\left(\text { curl }_{\Gamma}, \Gamma\right)} \frac{\left|\int_{\Gamma} \mathbf{u} \cdot \varphi d \Gamma\right|}{\|\varphi\|_{-1 / 2, \text { curl }}} .
$$

A norm of $\mathbf{H}^{-1 / 2}\left(\right.$ curl $\left._{\Gamma}, \Gamma\right)$ is given by

$$
\|\mathbf{v}\|_{-1 / 2, \text { curl }}=\sup _{\varphi \in \mathbf{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)} \frac{\left|\int_{\Gamma} \mathbf{v} \cdot \varphi d \Gamma\right|}{\|\varphi\|_{-1 / 2, \text { div }}} .
$$

Define $R(s): \mathbf{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right) \rightarrow \mathbf{H}^{-1 / 2}\left(\right.$ curl $\left._{\Gamma}, \Gamma\right)$ by

$$
\begin{aligned}
R(s) \mathbf{j}:= & \mu \int_{\Gamma} s K\left(s_{l}, \mathbf{x}-\mathbf{y}\right)\left[\mathbf{n}_{\mathbf{y}} \times \mathbf{n}_{\mathbf{y}} \times \mathbf{j}(\mathbf{x})\right] d \Gamma_{\mathbf{x}} \\
& +\frac{1}{\varepsilon} \nabla_{\Gamma} \int_{\Gamma} \frac{1}{s} K(s, \mathbf{x}-\mathbf{y}) \operatorname{div}_{\Gamma} \mathbf{j}(\mathbf{x}) d \Gamma_{\mathbf{x}}
\end{aligned}
$$

An appropriate variational formulation for the system of time-harmonic Maxwell equations is given by:

Find $\hat{\mathbf{j}}_{/} \in \mathbf{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)$ s.t. for all $\mathbf{q} \in \mathbf{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)$ holds

$$
\int_{\Gamma}\left(-R\left(s_{l}\right) \hat{\mathbf{j}}_{/}(\mathbf{y}), \mathbf{q}(\mathbf{y})\right) d \Gamma=\int_{\Gamma}\left(\hat{\mathbf{E}}_{/}^{\mathrm{inc}}(\mathbf{y}), \mathbf{q}(\mathbf{y})\right) d \Gamma
$$

for $I=0, \ldots, N$.

Theorem

For $s \in \mathbb{C}$ with $\operatorname{Re}(s) \geq \sigma_{0}>0$ the sesquilinear form is continuous and coercive on $\boldsymbol{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right) \times \boldsymbol{H}^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)$. In particular

$$
\operatorname{Re}\left(\int_{\Gamma} \varphi \cdot(-\overline{R(s) \varphi}) d \Gamma\right) \geq C \frac{1}{|s|^{2}}\|\varphi\|_{-1 / 2, d i v}^{2}
$$

for all $\varphi \in H^{-1 / 2}\left(\operatorname{div}_{\Gamma}, \Gamma\right)$.

For the inverse operator $R(s)^{-1}$ we have

$$
\left\|R(s)^{-1}\right\| \leq \tilde{C}|s|^{2}
$$

where \tilde{C} depends on σ_{0}.

Current and Future work

■ Implementation of the method

- Error analysis

■ Numerical tests

