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Introduction

• supported by ABB Research Center in Baden-Dättwil

• CAD integrated software

• used in daily business

• modularized program, HADAPT



Maxwell Model Hierarchy

Electro-quasistatics Magneto-quasistatics

ω ≪ c
L

curl e = −iωµh

curlh = σe+ iωǫe

curl e = −iωµh

curlh = σe+ iωǫe

?

Full Maxwell, wave phenomenaω ≫ 1
curl e = −iωµh

curlh = σe+ iωǫe

Electro-statics Magneto-statics

ω = 0curl e = −iωµh curlh = σe+ iωǫe



Most important quantities

ǫ ≈ 10−12

µ ≈ 10−7

a vector potential for magnetic field

ϕ scalar potential for electric field

µ µrµ0 = relative permeability · absolute permeability

ǫ ǫrǫ0 = relative Permittivity · absolute Permittivity

ω angular frequency = 2π · frequency

electric field e = −gradϕ− iωa

current density j = σ · e

electric displacement field d = ǫe

magnetic field b = curl a

magnetizing field h = 1
µ
b



Full Maxwell System in Frequency Domain

a vector potential for magnetic field

ϕ scalar potential for electric field

µ µrµ0 = relative permeability · absolute permeability

ǫ ǫrǫ0 = relative Permittivity · absolute Permittivity

ω angular frequency = 2π · frequency

curl
1

µ
curl a− (ω2ǫ− iωσ)a+ (iωǫ+ σ)gradϕ = 0

− div (ǫa) = 0



Full Maxwell System in Frequency Domain

to get the stationary case or to calculate low-frequencyω → 0

curl
1

µ
curl a− (ω2ǫ− iωσ)a+ (iωǫ+ σ)gradϕ = 0

−div (ǫa) = 0



Full Maxwell System in Frequency Domain

to get the stationary case or to calculate low-frequencyω → 0

For non-conducting materials e.g. in the airboxσ = 0

curl
1

µ
curl a− (ω2ǫ− iωσ)a+ (iωǫ+ σ)gradϕ = 0

− div (ǫa) = 0



Full Maxwell System in Frequency Domain

to get the stationary case or to calculate low-frequencyω → 0

For non-conducting materials e.g. in the airboxσ = 0

curl
1

µ
curl a− (ω2ǫ− iωσ)a+ (iωǫ+ σ)gradϕ = 0

− div (ǫa) = 0

Loss of control of the electric potential ϕ!



Numerical experiments: Geometry for Frequency test

Radius = 1 cm

Length = 20 cm
σ = 106

S

m
µr = ǫr = 1

Air = ΩN

Conductor = ΩC

ϕ = 0

ϕ = cos(ωt)



Numerical experiments: Frequency test
ϕimag [V] |ϕpeak| [V] ‖Epeak‖ [

V
m
]

1 kHz

500 Hz

100 Hz

1 Hz



Idea: integrate Gauss law by splitting ϕ = ϕ̃+ ψ in ΩN

curl
1

µ
curl a− (ω2ǫ− iωσ)a+ (iωǫ+ σ)gradϕ = 0

div (ǫa) = 0

Stabilization: Extendend a-ϕ-formulation

Apply div in non-conducting domain ΩN
→ time derivative of Gauss law (div e = ρ

ǫ
)

iω div (iωǫa+ ǫgradϕ) = 0⇔ ρ̇ = 0



Robust Full Maxwell Formulation

V := {v ∈ H(curl ; Ω) : curl Γvt = 0 on ∂Ω},
H(U ) :=

{
ψ ∈ H1(Ω) : ψ|Γ0 = 0, ψ|Γ1 = U

}
,

H1
e
(Ω) :=

{
v ∈ H1(Ω) : v ´ const on con.
comp. of ΩC , v|Γ0 = 0, v|Γ1 = 0

}

Stabilized variational formulation:
〈
1

µ
curl a, curl a′

〉
−
〈(
ω2ǫ− iωǫ)a,a′

〉

+ 〈(iωǫ+ σ)gradϕ,a′〉+ 〈iωǫgradψ, a′〉 = 〈js, a〉 ∀a′ ∈ V (1)

〈ǫa,grad ϕ̃′〉 = 0 ∀ϕ̃′ ∈ H(0) (2)

〈ǫgrad [ϕ̃+ ψ] ,gradψ′〉 = 0 ∀ψ′ ∈ H1
e (Ω) (3)



Setting: LC-circuit

ϕ = 0 ϕ = cos(ωt)

Material: Copper

σ 5.7 · 107 S
m

µr 1

ǫr 1

diameter 2.54 cm

length 40 cm

capacitor diamter 10 cm

capacitor distance 1 cm



Robust Maxwell Formulation: Numerical Examples



Operator Preconditioning

Wish: Other system with better properties e.g. real and s.p.d.

Problem: The new system has still to limit/reduce the number of iteration steps e.g.

Requirement: Choose a system that captures the essential properties of the stiffness 

matrix of the robust full Maxwell system.

Stabilized variational formulation:
〈
1

µ
curl a, curl a′

〉
−
〈(
ω2ǫ− iωǫ)a,a′

〉

+ 〈(iωǫ+ σ)gradϕ,a′〉+ 〈iωǫgradψ, a′〉 = 〈js, a〉 ∀a′ ∈ V (1)

〈ǫa,grad ϕ̃′〉 = 0 ∀ϕ̃′ ∈ H(0) (2)

〈ǫgrad [ϕ̃+ ψ] ,gradψ′〉 = 0 ∀ψ′ ∈ H1
e (Ω) (3)



〈ǫa,grad ϕ̃′〉 = 0 ∀ϕ̃′ ∈ H(0)

〈ǫgrad [ϕ̃+ ψ] ,gradψ′〉 = 0 ∀ψ′ ∈ H1
e (Ω)

Operator Preconditioning




curl 1

µ
curl + σω 0 0

0 −div (ǫgrad ) 0
0 0 −div (ǫgrad )|ΩC





Stabilized variational formulation:
〈
1

µ
curl a, curl a′

〉
−
〈(
ω2ǫ− iωǫ)a,a′

〉

+ 〈(iωǫ+ σ)gradϕ,a′〉+ 〈iωǫgradψ, a′〉 = 〈js, a〉 ∀a′ ∈ V



〈ǫa,grad ϕ̃′〉 = 0 ∀ϕ̃′ ∈ H(0)

〈ǫgrad [ϕ̃+ ψ] ,gradψ′〉 = 0 ∀ψ′ ∈ H1
e (Ω)

Stabilized variational formulation:
〈
1

µ
curl a, curl a′

〉
−
〈(
ω2ǫ− iωǫ)a,a′

〉

+ 〈(iωǫ+ σ)gradϕ,a′〉+ 〈iωǫgradψ, a′〉 = 〈js, a〉 ∀a′ ∈ V

Operator Preconditioning




curl 1

µ
curl + σω 0 0

0 −div (ǫgrad ) 0
0 0 −div (ǫgrad )|ΩC





Amenable to H-Matrix preconditioning and is real and s.p.d.



Numerical Examples: Geometry

- high permeable core e.g. 

µ
r
=1000

- inductive and capacative effects

- low frequency 



Operator Preconditioning: Memory consumption



Operator Preconditioning: Time consumption



� Uses two fundamental ideas:
� Partion of the Matrix 

� Limitation to blockwise low-rank matrices

Partition:
P = {b = t× s, t, s ⊂ I}

I := {1, . . . , n}

with pair wise disjoint blocks b and

I × I = ∪b∈P b.

Matrix indices t are geometry related:

Xt := ∪i∈tsuppϕi

t× s ∈ P ⇔ min {diamXt, diamXs} ≤ ´dist(Xt, Xs) or t× s is small.

H-Matrix:Introduction



H(P, k) :=
{
M ∈ Rn×n : rankM|b ≤ k ∀b ∈ P

}

H-Matrix:Introduction

Low-rank-matrices/rank -k Matrix A ∈ Rm×n:

• can be written as A = UV ′, U ∈ Rm×k, V ∈ Rn×k

• memory consumpotion of k(m+ n) instead of m · n

• mv-multiplication is of Order O(k(m+ n)) instead of O(m · n)



H-Matrix:Introduction

• H-mv-multiplication can be done without approximation.

• H-matrix addition: blockweise truncated addition with precision ǫ.

• SVD of AB′ of rank -k matrices with a QR decomposition of A and B (cost:
k2(m+ n)) and the an SVD of RAR

′
B

Complexity for H(P, k):

Memory, mv-multi. : kn logn

A+B : k2n log n

A ·B,A−1, LU : k2n(logn)2

where n denotes the number of unknowns.



H-Matrix:FE-Application

� FE-Matrix is sparse

bad condition of matrix

Invese and LU is not sparse

�

�

• Use H-Matrices to build a preconditioner

• H-Matrices are robust for uniform-elliptic operators with jumping coe±cients

• It is possible to compute H-Invese and H-LU decomposition



[1] M. Bebendorf and J. Ostrowski. Parallel hierarchical matrix preconditioners for the curl-curl operator. Journal of Computational 

Mathematics, special issue on Adaptive and Multilevel Methods for Electromagnetics, 27(5):624-641, 2009.

The problem with the application of H-Matrices on the preconditioner is in the
curl 1

µ
curl Operator e.g. that the curl Operator has an infinite-dimensional kernel

and that the problem is not elliptic.

In [1] was the H-Matrix applied for the magneto-static problem

curl
1

µ
curl a = j0 in Ω, a × n = 0 on ∂Ω

There was also shown, that it is necessary to regulize the magneto-static problem.
Since the H-Matrix was just used to compute a preconditioner, it was enough to
apply it to

curl
1

µ
curl a + βa = j0 in Ω, a × n = 0 on ∂Ω

With β ≫ 1

H-Matrices:Application






curl 1

µ
curl + σω 0 0

0 −div (ǫgrad ) 0
0 0 −div (ǫgrad )|ΩC





Similiar to Laplace-Operator. No problem.

- Magneto-quasistatic operator

- was not regular enough, even with limiter

H-Matrices:Application



H-Matrix:MQS Application

Idea: Use a σ-adaptive regularization

Problem: Has not worked for our curl curl -Operator:

curl
1

µ
curl a+ ωσa (1)

When we denote the Matrix of (1) with P , then the new matrix is given by

P ′ = P + αI

Where

α =

∑
T∈C σ(T )

card(C)

where C is the set of conductive tetrahedra.



H-Matrix:Numerical Experiments

• used σ-adaptive regularization

• computedH-Choleksy decomposition with AHMED library and compared with
direct solver PARDISO.

• we have just investigated the preconditiong effect on the magneto-quasistatic
problem

• we have investigated the in°uence on the performance when h or ω or µr is
changed.

• PARDISO was always fasters, but has always allocated more memory and was
due this not able to compute the largest examples



H-Matrix:Numerical Experiments



H-Matrix:Numerical Experiments



Conclusions

• Found new, robust formulation for Maxwell′s equations for low frequencies.
Now it is possible to compute inductive and capacitive effects if ω → 0 in an
non-conductive domain.

• Improved preconditioner with operator preconditioning technique. Due to this
trick we get a symmetric, positive definite matrix.

• Able to apply H-matrices after we have found a way to compute the H-matix
approximation towards of the curl curl + σω part of the matrix





Thanks for your Attention!!!


