Robust Maxwell Formulation

Florian Krämer, Seminar for Applied
Mathematics, ETH Zürich

Overview

- Introduction
- Robust Full Maxwell Formulation
- Problems with standard full Maxwell formulation
- Stabilization
- Some Examples
- Operator Precondition
- Introduction
- Application to Robust Maxwell Formulation
- Numerical Examples
- \mathcal{H}-Matrix technique
- Introduction
- Application to Robust Maxwell Formulation \& Eddy Current Model
- Numerical Examples

Introduction

- supported by $A B B$ Research Center in Baden-Dättwil
- CAD integrated software
- used in daily business
- modularized program, HADAPT

Maxwell Model Hierarchy

$$
\begin{array}{lll}
\text { curl } \mathbf{e} & =-i \omega \mu \mathbf{h} \\
\text { curl } \mathbf{h} & =\sigma \mathbf{e}+i \omega \epsilon \mathbf{e} & \omega \gg 1
\end{array} \quad \text { Full Maxwell, wave phenomena }
$$

$$
\text { curle }=\text {-iouh } \quad \text { curl e }=-i \omega \mu h
$$

$$
\text { curl } \mathbf{h}=\sigma \mathbf{e}+i \omega \epsilon \mathbf{e}
$$

$$
\omega \ll \frac{c}{L}
$$

$$
\text { curl } \mathbf{h}=\sigma \mathbf{e}+i \omega \mathrm{e}
$$

$$
\begin{array}{lll}
\text { curl e }=-i \omega 1 \mathbf{h} & \omega=0 & \text { curlh }=\sigma \mathbf{e}+i \omega e \mathbf{e} \\
\text { Electro-statics } & \text { Magneto-statics }
\end{array}
$$

Most important quantities

electric field $\mathbf{e}=-\operatorname{grad} \varphi-i \omega \mathbf{a}$
current density $\mathbf{j}=\sigma \cdot \mathbf{e}$
electric displacement field $\mathbf{d}=\epsilon \mathbf{e}$

$$
\epsilon \approx 10^{-12}
$$

magnetic field $\mathbf{b}=$ curl \mathbf{a}
magnetizing field $\mathbf{h}=\frac{1}{\mu} \mathbf{b}$

$$
\mu \approx 10^{-7}
$$

a vector potential for magnetic field
φ scalar potential for electric field
$\mu \mu_{r} \mu_{0}=$ relative permeability \cdot absolute permeability
$\epsilon \epsilon_{r} \epsilon_{0}=$ relative Permittivity \cdot absolute Permittivity
ω angular frequency $=2 \pi \cdot$ frequency

Full Maxwell System in Frequency Domain

$$
\begin{aligned}
\operatorname{curl} \frac{1}{\mu} \mathbf{c u r l} \mathbf{a}-\left(\omega^{2} \epsilon-i \omega \sigma\right) \mathbf{a}+(i \omega \epsilon+\sigma) \operatorname{grad} \varphi & =0 \\
-\operatorname{div}(\epsilon \mathbf{a}) & =0
\end{aligned}
$$

a vector potential for magnetic field
φ scalar potential for electric field
$\mu \mu_{r} \mu_{0}=$ relative permeability \cdot absolute permeability
$\epsilon \epsilon_{r} \epsilon_{0}=$ relative Permittivity - absolute Permittivity
ω angular frequency $=2 \pi$. frequency

Full Maxwell System in Frequency Domain

$$
\begin{aligned}
\operatorname{curl} \frac{1}{\mu} \text { curl } \mathbf{a}-\omega^{2}<-i \omega<\mathbf{a}+(i \omega<\sigma) \operatorname{grad} \varphi & =0 \\
-\operatorname{div}(\epsilon \mathbf{a}) & =0
\end{aligned}
$$

$\omega \rightarrow 0 \quad$ to get the stationary case or to calculate low-frequency

Full Maxwell System in Frequency Domain

$$
\begin{aligned}
\operatorname{curl} \frac{1}{\mu} \text { curl } \mathbf{a}-\left(\alpha^{2} \epsilon-\dot{-} \sigma\right) \mathbf{a}+(\operatorname{grad} \varphi & =0 \\
-\operatorname{div}(\epsilon \mathbf{a}) & =0
\end{aligned}
$$

$\omega \rightarrow 0 \quad$ to get the stationary case or to calculate low-frequency
$\sigma=0 \quad$ For non-conducting materials e.g. in the airbox

Full Maxwell System in Frequency Domain

$$
\begin{aligned}
\operatorname{curl} \frac{1}{\mu} \text { curl } \mathbf{a}-\left(\alpha^{2} \epsilon-\dot{-} \sigma\right) \mathbf{a}+(\operatorname{grad} \varphi & =0 \\
-\operatorname{div}(\epsilon \mathbf{a}) & =0
\end{aligned}
$$

$\omega \rightarrow 0 \quad$ to get the stationary case or to calculate low-frequency
$\sigma=0 \quad$ For non-conducting materials e.g. in the airbox

Loss of control of the electric potential φ !

Numerical experiments: Geometry for Frequency test

Numerical experiments: Frequency test

Stabilization: Extendend $\mathbf{a}-\varphi$-formulation

$$
\begin{aligned}
\operatorname{curl} \frac{1}{\mu} \mathbf{c u r l} \mathbf{a}-\left(\omega^{2} \epsilon-i \omega \sigma\right) \mathbf{a}+(i \omega \epsilon+\sigma) \operatorname{grad} \varphi & =0 \\
\operatorname{div}(\epsilon \mathbf{a}) & =0
\end{aligned}
$$

Apply div in non-conducting domain Ω_{N}
\rightarrow time derivative of Gauss law (div $\mathbf{e}=\frac{\rho}{\epsilon}$)

$$
i \omega \operatorname{div}(i \omega \epsilon \mathbf{a}+\epsilon \operatorname{grad} \varphi)=0 \Leftrightarrow \dot{\rho}=0
$$

Idea: integrate Gauss law by splitting $\varphi=\tilde{\varphi}+\psi$ in Ω_{N}

Robust Full Maxwell Formulation

Stabilized variational formulation:

$$
\begin{align*}
&\left\langle\frac{1}{\mu} \mathbf{c u r l} \mathbf{a}, \mathbf{c u r l} \mathbf{a}^{\prime}\right\rangle-\left\langle\left(\omega^{2} \epsilon-i \omega \epsilon\right) \mathbf{a}, \mathbf{a}^{\prime}\right\rangle \\
&+\left\langle(i \omega \epsilon+\sigma) \operatorname{grad} \varphi, \mathbf{a}^{\prime}\right\rangle+\left\langle i \omega \epsilon \operatorname{grad} \psi, a^{\prime}\right\rangle=\left\langle\mathbf{j}^{s}, a\right\rangle \quad \forall \mathbf{a}^{\prime} \in V \tag{1}\\
&\left\langle\epsilon \mathbf{a}, \operatorname{grad} \tilde{\varphi}^{\prime}\right\rangle=0 \quad \forall \tilde{\varphi}^{\prime} \in H(0) \tag{2}\\
&\left\langle\epsilon \operatorname{grad}[\tilde{\varphi}+\psi], \operatorname{grad} \psi^{\prime}\right\rangle=0 \quad \forall \psi^{\prime} \in H_{e}^{1}(\Omega) \tag{3}
\end{align*}
$$

Setting: LC-circuit

Robust Maxwell Formulation: Numerical Examples

Operator Preconditioning

Stabilized variational formulation:

$$
\begin{gather*}
\left\langle\frac{1}{\mu} \mathbf{c u r l} \mathbf{a}, \mathbf{c u r l} \mathbf{a}^{\prime}\right\rangle-\left\langle\left(\omega^{2} \epsilon-i \omega \epsilon\right) \mathbf{a}, \mathbf{a}^{\prime}\right\rangle \\
+\left\langle(i \omega \epsilon+\sigma) \operatorname{grad} \varphi, \mathbf{a}^{\prime}\right\rangle+\left\langle i \omega \epsilon \operatorname{grad} \psi, a^{\prime}\right\rangle=\left\langle j^{s}, a\right\rangle \quad \forall \mathbf{a}^{\prime} \in V \tag{1}\\
\left\langle\epsilon a, \operatorname{grad} \tilde{\varphi}^{\prime}\right\rangle=0 \quad \forall \tilde{\varphi}^{\prime} \in H(0) \tag{2}\\
\langle\epsilon \operatorname{grad}[\tilde{\varphi}+\psi], \operatorname{grad} \psi \prime\rangle=0 \quad \forall \psi^{\prime} \in H_{e}^{1}(\Omega) \tag{3}
\end{gather*}
$$

Wish: Other system with better properties e.g. real and s.p.d.
Problem: The new system has still to limit/reduce the number of iteration steps e.g.
Requirement: Choose a system that captures the essential properties of the stiffness matrix of the robust full Maxwell system.

Operator Preconditioning

Stabilized variational formulation:

$$
\begin{aligned}
\left\langle\frac{1}{\mu} \mathbf{c u r l} \mathbf{a}, \mathbf{c u r l} \mathbf{a}^{\prime}\right\rangle-\left\langle\left(\omega^{2} \epsilon-i \omega \epsilon\right) \mathbf{a}, \mathbf{a}^{\prime}\right\rangle & \\
+\left\langle(i \omega \epsilon+\sigma) \operatorname{grad} \varphi, \mathbf{a}^{\prime}\right\rangle+\left\langle i \omega \epsilon \operatorname{grad} \psi, a^{\prime}\right\rangle & =\left\langle j^{s}, a\right\rangle \quad \forall \mathbf{a}^{\prime} \in V \\
\left\langle\epsilon a, \operatorname{grad} \tilde{\varphi}^{\prime}\right\rangle & =0 \quad \forall \tilde{\varphi}^{\prime} \in H(0) \\
\left\langle\epsilon \operatorname{grad}[\tilde{\varphi}+\psi], \operatorname{grad} \psi^{\prime}\right\rangle & =0 \quad \forall \psi^{\prime} \in H_{e}^{1}(\Omega)
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
\operatorname{curl} \frac{1}{\mu} \operatorname{curl}+\sigma \omega & 0 & 0 \\
0 & -\operatorname{div}(\epsilon \operatorname{grad}) & 0 \\
0 & 0 & -\operatorname{div}(\epsilon \operatorname{grad})_{\mid \Omega_{C}}
\end{array}\right)
$$

Operator Preconditioning

Stabilized variational formulation:

$$
\begin{aligned}
\left\langle\frac{1}{\mu} \mathbf{c u r l} \mathbf{a}, \mathbf{c u r l} \mathbf{a}^{\prime}\right\rangle-\left\langle\left(\omega^{2} \epsilon-i \omega \epsilon\right) \mathbf{a}, \mathbf{a}^{\prime}\right\rangle & \\
+\left\langle(i \omega \epsilon+\sigma) \operatorname{grad} \varphi, \mathbf{a}^{\prime}\right\rangle+\left\langle i \omega \epsilon \operatorname{grad} \psi, a^{\prime}\right\rangle & =\left\langle j^{s}, a\right\rangle \quad \forall \mathbf{a}^{\prime} \in V \\
\left\langle\epsilon a, \operatorname{grad} \tilde{\varphi}^{\prime}\right\rangle & =0 \quad \forall \tilde{\varphi}^{\prime} \in H(0) \\
\left\langle\epsilon \operatorname{grad}[\tilde{\varphi}+\psi], \operatorname{grad} \psi^{\prime}\right\rangle & =0 \quad \forall \psi^{\prime} \in H_{e}^{1}(\Omega)
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
\mathbf{c u r l} \frac{1}{\mu} \mathbf{c u r l}+\sigma \omega & 0 & 0 \\
0 & -\operatorname{div}(\epsilon \operatorname{grad}) & 0 \\
0 & 0 & -\operatorname{div}(\epsilon \operatorname{grad})_{\mid \Omega_{C}}
\end{array}\right)
$$

Amenable to \mathcal{H}-Matrix preconditioning and is real and s.p.d.

Numerical Examples: Geometry

Operator Preconditioning: Memory consumption

Memory consumption

Operator Preconditioning: Time consumption

Time consumption

\mathcal{H}-Matrix:Introduction

- Uses two fundamental ideas:
- Partion of the Matrix
- Limitation to blockwise low-rank matrices

Partition:

$$
\begin{gathered}
P=\{b=t \times s, t, s \subset I\} \\
I:=\{1, \ldots, n\}
\end{gathered}
$$

with pair wise disjoint blocks b and

$$
I \times I=\cup_{b \in P} b .
$$

Matrix indices t are geometry related:

$$
X_{t}:=\cup_{i \in t} \operatorname{supp} \varphi_{i}
$$

$$
t \times s \in P \Leftrightarrow \min \left\{\operatorname{diam} X_{t}, \operatorname{diam} X_{s}\right\} \leq \leq^{\prime} \operatorname{dist}\left(X_{t}, X_{s}\right) \text { or } t \times s \text { is small. }
$$

\mathcal{H}-Matrix:Introduction

$$
H(P, k):=\left\{M \in \mathbb{R}^{n \times n}: \operatorname{rank} M_{\mid b} \leq k \quad \forall b \in P\right\}
$$

Low-rank-matrices/rank-k Matrix $A \in \mathbb{R}^{m \times n}$:

- can be written as $A=U V^{\prime}, U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}$
- memory consumpotion of $k(m+n)$ instead of $m \cdot n$
- mv-multiplication is of $\operatorname{Order} \mathcal{O}(k(m+n))$ instead of $\mathcal{O}(m \cdot n)$

\mathcal{H}-Matrix:Introduction

Complexity for $\mathcal{H}(P, k)$:

$$
\begin{array}{rc}
\text { Memory, mv-multi. : } & k n \log n \\
A+B: & k^{2} n \log n \\
A \cdot B, A^{-1}, \mathrm{LU}: & k^{2} n(\log n)^{2}
\end{array}
$$

where n denotes the number of unknowns.

- \mathcal{H}-mv-multiplication can be done without approximation.
- \mathcal{H}-matrix addition: blockweise truncated addition with precision ϵ.
- SVD of $A B^{\prime}$ of rank - k matrices with a QR decomposition of A and B (cost: $k^{2}(m+n)$) and the an SVD of $R_{A} R_{B}^{\prime}$

H-Matrix:FE-Application

\checkmark FE-Matrix is sparse
x bad condition of matrix
x Invese and LU is not sparse

- Use \mathcal{H}-Matrices to build a preconditioner
- \mathcal{H}-Matrices are robust for uniform-elliptic operators with jumping coe \pm cients
- It is possible to compute \mathcal{H}-Invese and \mathcal{H}-LU decomposition

\mathcal{H}-Matrices:Application

The problem with the application of \mathcal{H}-Matrices on the preconditioner is in the curl $\frac{1}{\mu}$ curl Operator e.g. that the curl Operator has an infinite-dimensional kernel and that the problem is not elliptic.

In [1] was the \mathcal{H}-Matrix applied for the magneto-static problem

$$
\operatorname{curl} \frac{1}{\mu} \mathbf{c u r l} \mathbf{a}=j_{0} \text { in } \Omega, \mathbf{a} \times n=0 \text { on } \partial \Omega
$$

There was also shown, that it is necessary to regulize the magneto-static problem. Since the \mathcal{H}-Matrix was just used to compute a preconditioner, it was enough to apply it to

$$
\operatorname{curl} \frac{1}{\mu} \mathbf{c u r l} \mathbf{a}+\beta \mathbf{a}=j_{0} \text { in } \Omega, \mathbf{a} \times n=0 \text { on } \partial \Omega
$$

With $\beta \gg 1$

[^0]
\mathcal{H}-Matrices:Application

- Magneto-quasistatic operator
- was not regular enough, even with limiter

H-Matrix:MQS Application

Problem: Has not worked for our curl curl-Operator:

$$
\begin{equation*}
\operatorname{curl} \frac{1}{\mu} \mathbf{c u r l} \mathbf{a}+\omega \sigma \mathbf{a} \tag{1}
\end{equation*}
$$

Idea: Use a σ-adaptive regularization

When we denote the Matrix of (1) with P, then the new matrix is given by

$$
P^{\prime}=P+\alpha I
$$

Where

$$
\alpha=\frac{\sum_{T \in C} \sigma(T)}{\operatorname{card}(C)}
$$

where C is the set of conductive tetrahedra.

\mathcal{H}-Matrix:Numerical Experiments

- used σ-adaptive regularization
- computed \mathcal{H}-Choleksy decomposition with AHMED library and compared with direct solver PARDISO.
- we have just investigated the preconditiong effect on the magneto-quasistatic problem
- we have investigated the in° uence on the performance when h or ω or μ_{r} is changed.
- PARDISO was always fasters, but has always allocated more memory and was due this not able to compute the largest examples

\mathcal{H}-Matrix:Numerical Experiments

Memory Consumption

\mathcal{H}-Matrix:Numerical Experiments

Time for solving

Conclusions

- Found new, robust formulation for Maxwell's equations for low frequencies. Now it is possible to compute inductive and capacitive effects if $\omega \rightarrow 0$ in an non-conductive domain.
- Improved preconditioner with operator preconditioning technique. Due to this trick we get a symmetric, positive definite matrix.
- Able to apply \mathcal{H}-matrices after we have found a way to compute the \mathcal{H}-matix approximation towards of the curl curl $+\sigma \omega$ part of the matrix

Thanks for your Attention!!!

[^0]: [1] M. Bebendorf and J. Ostrowski. Parallel hierarchical matrix preconditioners for the curl-curl operator. Journal of Computational Mathematics, special issue on Adaptive and Multilevel Methods for Electromagnetics, 27(5):624-641, 2009.

