

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Robust Maxwell Formulation

Florian Krämer, Seminar for Applied Mathematics, ETH Zürich

Overview

- Introduction
- Robust Full Maxwell Formulation
 - Problems with standard full Maxwell formulation
 - Stabilization
 - Some Examples
- Operator Precondition
 - Introduction
 - Application to Robust Maxwell Formulation
 - Numerical Examples
- \mathcal{H} -Matrix technique
 - Introduction
 - Application to Robust Maxwell Formulation & Eddy Current Model
 - Numerical Examples

Introduction

- supported by ABB Research Center in Baden-Dättwil
- CAD integrated software
- used in daily business
- modularized program, HADAPT

Maxwell Model Hierarchy

$curl e = -i\omega\mu h$ $curl h = \sigma e + i\omega\epsilon e$	$\omega \gg 1$	Full Maxwell, wave phenomena
curl e = $-i\omega\mu$ h curl h = $\sigma \mathbf{e} + i\omega\epsilon \mathbf{e}$ Electro-quasistatics	$\omega \ll rac{c}{L}$	$curl e = -i\omega\mu h$ $curl h = \sigma e + i\omega e$ Magneto-quasistatics
$curl e = -i\omega\mu h$ Electro-statics	$\omega = 0$	$curl h = \sigma e + i\omega \epsilon e$ Magneto-statics
	-6-20	

Most important quantities

electric field $\mathbf{e} = -\mathbf{grad} \, \varphi - i \omega \mathbf{a}$ current density $\mathbf{j} = \boldsymbol{\sigma} \cdot \mathbf{e}$ $\epsilon \approx 10^{-12}$ electric displacement field $d = \epsilon e$ magnetic field $\mathbf{b} = \operatorname{curl} \mathbf{a}$ magnetizing field $h = \frac{1}{u}b$ $\mu \approx 10^{-7}$ a vector potential for magnetic field φ scalar potential for electric field $\mu \ \mu_r \mu_0$ = relative permeability \cdot absolute permeability $\epsilon \epsilon_r \epsilon_0$ = relative Permittivity \cdot absolute Permittivity ω angular frequency = $2\pi \cdot$ frequency

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} - (\omega^2 \epsilon - i\omega\sigma) \mathbf{a} + (i\omega\epsilon + \sigma) \operatorname{grad} \varphi = 0$$
$$-\operatorname{div} (\epsilon \mathbf{a}) = 0$$

a vector potential for magnetic field

- $\varphi\,$ scalar potential for electric field
- $\mu \ \mu_r \mu_0$ = relative permeability \cdot absolute permeability
- $\epsilon \epsilon_r \epsilon_0$ = relative Permittivity \cdot absolute Permittivity
- $\omega\,$ angular frequency $= 2\pi \cdot {\rm frequency}$

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} - (\omega^2 \epsilon - i\omega \sigma) \mathbf{a} + (i\omega \epsilon + \sigma) \operatorname{grad} \varphi = 0$$
$$-\operatorname{div} (\epsilon \mathbf{a}) = 0$$

 $\omega
ightarrow 0$ to get the stationary case or to calculate low-frequency

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} - (\varphi^2 \epsilon - i\varphi \sigma) \mathbf{a} + (i\varphi \epsilon + \varphi) \operatorname{grad} \varphi = 0$$
$$-\operatorname{div} (\epsilon \mathbf{a}) = 0$$

 $\omega
ightarrow 0$ to get the stationary case or to calculate low-frequency

 $\sigma = 0$ For non-conducting materials e.g. in the airbox

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} - (\varphi^2 \epsilon - i\varphi \sigma) \mathbf{a} + (i\varphi \epsilon + \mathbf{a}) \operatorname{grad} \varphi = 0$$
$$-\operatorname{div} (\epsilon \mathbf{a}) = 0$$

 $\omega
ightarrow 0$ to get the stationary case or to calculate low-frequency

 $\sigma = 0$ For non-conducting materials e.g. in the airbox

Loss of control of the electric potential φ !

Numerical experiments: Geometry for Frequency test

Numerical experiments: Frequency test

Stabilization: Extendend a- φ -formulation

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} - (\omega^2 \epsilon - i\omega\sigma) \mathbf{a} + (i\omega\epsilon + \sigma) \operatorname{grad} \varphi = 0$$
$$\operatorname{div} (\epsilon \mathbf{a}) = 0$$

Apply div in non-conducting domain Ω_N \rightarrow time derivative of Gauss law (div $\mathbf{e} = \frac{\rho}{\epsilon}$)

 $i\omega \operatorname{div} (i\omega\epsilon \mathbf{a} + \epsilon \operatorname{\mathbf{grad}} \varphi) = 0 \Leftrightarrow \dot{\rho} = 0$

Idea: integrate Gauss law by splitting $\varphi = \tilde{\varphi} + \psi$ in Ω_N

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Robust Full Maxwell Formulation

Stabilized variational formulation:

$$\left\langle \frac{1}{\mu} \operatorname{curl} \mathbf{a}, \operatorname{curl} \mathbf{a}' \right\rangle - \left\langle \left(\omega^2 \epsilon - i \omega \epsilon \right) \mathbf{a}, \mathbf{a}' \right\rangle$$
$$+ \left\langle \left(i \omega \epsilon + \sigma \right) \operatorname{grad} \varphi, \mathbf{a}' \right\rangle + \left\langle i \omega \epsilon \operatorname{grad} \psi, a' \right\rangle = \left\langle \mathbf{j}^s, a \right\rangle \qquad \forall \mathbf{a}' \in V \quad (1)$$

$$\langle \epsilon \mathbf{a}, \operatorname{\mathbf{grad}} \tilde{\varphi}' \rangle = 0 \qquad \forall \tilde{\varphi}' \in H(0)$$
 (2)

$$\langle \epsilon \operatorname{\mathbf{grad}} \left[\tilde{\varphi} + \psi \right], \operatorname{\mathbf{grad}} \psi' \rangle = 0 \qquad \forall \psi' \in H^1_e(\Omega)$$
 (3)

Setting: LC-circuit

diameter 2.54 cm

length 40 cm

capacitor diamter 10 cm

capacitor distance 1 cm

Material: Copper $\sigma 5.7 \cdot 10^7 \frac{S}{m}$ μ_r 1

 ϵ_r 1

Robust Maxwell Formulation: Numerical Examples

Operator Preconditioning

Stabilized variational formulation:

$$\left\langle \frac{1}{\mu} \operatorname{curl} \mathbf{a}, \operatorname{curl} \mathbf{a}' \right\rangle - \left\langle \left(\omega^2 \epsilon - i \omega \epsilon \right) \mathbf{a}, \mathbf{a}' \right\rangle + \left\langle \left(i \omega \epsilon + \sigma \right) \operatorname{grad} \varphi, \mathbf{a}' \right\rangle + \left\langle i \omega \epsilon \operatorname{grad} \psi, a' \right\rangle = \langle j^s, a \rangle \qquad \forall \mathbf{a}' \in V \quad (1) \left\langle \epsilon a, \operatorname{grad} \tilde{\varphi}' \right\rangle = 0 \qquad \forall \tilde{\varphi}' \in H(0) \tag{2}$$

$$\langle \epsilon \operatorname{\mathbf{grad}} \left[\tilde{\varphi} + \psi \right], \operatorname{\mathbf{grad}} \psi \prime \rangle = 0 \qquad \forall \psi' \in H^1_e(\Omega)$$
 (3)

Wish: Other system with better properties e.g. real and s.p.d.

Problem: The new system has still to limit/reduce the number of iteration steps e.g.

Requirement: Choose a system that captures the essential properties of the stiffness matrix of the robust full Maxwell system.

Operator Preconditioning

Stabilized variational formulation:

$$\begin{cases} \frac{1}{\mu} \mathbf{curl} \, \mathbf{a}, \mathbf{curl} \, \mathbf{a}' \\ + \langle (i\omega\epsilon + \sigma) \, \mathbf{grad} \, \varphi, \mathbf{a}' \rangle + \langle i\omega\epsilon \mathbf{grad} \, \psi, a' \rangle &= \langle j^s, a \rangle \quad \forall \mathbf{a}' \in V \\ \langle \epsilon a, \mathbf{grad} \, \tilde{\varphi}' \rangle &= 0 \quad \forall \tilde{\varphi}' \in H(0) \\ \langle \epsilon \mathbf{grad} \, [\tilde{\varphi} + \psi], \mathbf{grad} \, \psi' \rangle &= 0 \quad \forall \psi' \in H_e^1(\Omega) \end{cases}$$

$$egin{pmatrix} \mathbf{curl} \ rac{1}{\mu}\mathbf{curl} + \sigma \omega & 0 & 0 \ 0 & -\operatorname{div}\left(\epsilon\mathbf{grad}\,
ight) & 0 \ 0 & 0 & -\operatorname{div}\left(\epsilon\mathbf{grad}\,
ight)_{|\Omega_C} \end{pmatrix}$$

Operator Preconditioning

Stabilized variational formulation:

$$\begin{cases} \frac{1}{\mu} \mathbf{curl} \, \mathbf{a}, \mathbf{curl} \, \mathbf{a}' \\ + \langle (i\omega\epsilon + \sigma) \, \mathbf{grad} \, \varphi, \mathbf{a}' \rangle + \langle i\omega\epsilon \mathbf{grad} \, \psi, a' \rangle &= \langle j^s, a \rangle \quad \forall \mathbf{a}' \in V \\ \langle \epsilon a, \mathbf{grad} \, \tilde{\varphi}' \rangle &= 0 \quad \forall \tilde{\varphi}' \in H(0) \\ \langle \epsilon \mathbf{grad} \, [\tilde{\varphi} + \psi], \mathbf{grad} \, \psi' \rangle &= 0 \quad \forall \psi' \in H_e^1(\Omega) \end{cases}$$

$$\begin{pmatrix} \operatorname{curl} \frac{1}{\mu} \operatorname{curl} + \sigma \omega & 0 & 0 \\ 0 & -\operatorname{div} (\epsilon \operatorname{\mathbf{grad}}) & 0 \\ 0 & 0 & -\operatorname{div} (\epsilon \operatorname{\mathbf{grad}})_{|\Omega_C} \end{pmatrix}$$

Amenable to \mathcal{H} -Matrix preconditioning and is real and s.p.d.

Numerical Examples: Geometry

- high permeable core e.g. $\mu_{r}{=}1000$
- inductive and capacative effects
- low frequency

Operator Preconditioning: Memory consumption

Memory consumption

16 12 Memory [GB] ---- New Precond. 8 ----- Old Precond. 4 0 0 200'000 400'000 600'000 800'000 1'000'000 1'200'000 1'400'000 1'600'000 1'800'000 Number of d.o.f.

Operator Preconditioning: Time consumption

Time consumption

\mathcal{H} -Matrix:Introduction

Uses two fundamental ideas:

Partion of the Matrix

Limitation to blockwise low-rank matrices

Partition:

$$P = \{b = t \times s, t, s \subset I\}$$

with pair wise disjoint blocks b and

$$I \times I = \cup_{b \in P} b.$$

Matrix indices t are geometry related:

$$X_t := \cup_{i \in t} \mathrm{supp}\,\varphi_i$$

 $t \times s \in P \Leftrightarrow \min \{ \operatorname{diam} X_t, \operatorname{diam} X_s \} \leq \operatorname{\mathsf{`dist}}(X_t, X_s) \text{ or } t \times s \text{ is small.}$

$\mathcal{H}\text{-}Matrix:Introduction$

 $H(P,k) := \left\{ M \in \mathbb{R}^{n \times n} : \operatorname{rank} M_{|b} \le k \quad \forall b \in P \right\}$

Low-rank-matrices/rank-k Matrix $A \in \mathbb{R}^{m \times n}$:

- can be written as $A = UV', U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}$
- memory consumptiion of k(m+n) instead of $m \cdot n$
- mv-multiplication is of Order $\mathcal{O}(k(m+n))$ instead of $\mathcal{O}(m \cdot n)$

H-Matrix:Introduction

Complexity for $\mathcal{H}(P,k)$:

Memory, mv-multi. : $kn \log n$ A + B : $k^2 n \log n$ $A \cdot B, A^{-1}, LU$: $k^2 n (logn)^2$

where n denotes the number of unknowns.

- \mathcal{H} -mv-multiplication can be done without approximation.
- \mathcal{H} -matrix addition: blockweise truncated addition with precision ϵ .
- SVD of AB' of rank-k matrices with a QR decomposition of A and B (cost: $k^2(m+n)$) and the an SVD of $R_A R'_B$

\mathcal{H} -Matrix:FE-Application

- ✓ FE-Matrix is sparse
- ✗ bad condition of matrix
- Invese and LU is not sparse

- \bullet Use $\mathcal H\text{-}\mathsf{Matrices}$ to build a preconditioner
- \mathcal{H} -Matrices are robust for uniform-elliptic operators with jumping coe \pm cients
- $\bullet~$ It is possible to compute $\mathcal H\text{-Invese}$ and $\mathcal H\text{-LU}$ decomposition

\mathcal{H} -Matrices:Application

The problem with the application of \mathcal{H} -Matrices on the preconditioner is in the **curl** $\frac{1}{\mu}$ **curl** Operator e.g. that the **curl** Operator has an infinite-dimensional kernel and that the problem is not elliptic.

In [1] was the \mathcal{H} -Matrix applied for the magneto-static problem

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} = j_0 \text{ in } \Omega, \mathbf{a} \times n = 0 \text{ on } \partial \Omega$$

There was also shown, that it is necessary to regulize the magneto-static problem. Since the \mathcal{H} -Matrix was just used to compute a preconditioner, it was enough to apply it to

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{a} + \beta \mathbf{a} = j_0 \text{ in } \Omega, \mathbf{a} \times n = 0 \text{ on } \partial \Omega$$

With $\beta \gg 1$

[1] M. Bebendorf and J. Ostrowski. Parallel hierarchical matrix preconditioners for the curl-curl operator. *Journal of Computational Mathematics, special issue on Adaptive and Multilevel Methods for Electromagnetics*, 27(5):624-641, 2009.

- Magneto-quasistatic operator
- was not regular enough, even with limiter

(1)

H-Matrix:MQS Application

Problem: Has not worked for our **curl curl**-Operator:

curl
$$rac{1}{\mu}$$
curl a $+ \,\omega\sigma$ a

Idea: Use a σ -adaptive regularization

When we denote the Matrix of (1) with P, then the new matrix is given by

$$P' = P + \alpha I$$

Where

$$\alpha = \frac{\sum_{T \in C} \sigma(T)}{\mathsf{card}(C)}$$

where C is the set of conductive tetrahedra.

H-Matrix:Numerical Experiments

- used σ -adaptive regularization
- computed \mathcal{H} -Choleksy decomposition with AHMED library and compared with direct solver PARDISO.
- we have just investigated the preconditiong effect on the magneto-quasistatic problem
- we have investigated the in \circ uence on the performance when h or ω or μ_r is changed.
- PARDISO was always fasters, but has always allocated more memory and was due this not able to compute the largest examples

H-Matrix:Numerical Experiments

Memory Consumption

H-Matrix:Numerical Experiments

Time for solving

Conclusions

- Found new, robust formulation for Maxwell's equations for low frequencies. Now it is possible to compute inductive and capacitive effects if $\omega \to 0$ in an non-conductive domain.
- Improved preconditioner with operator preconditioning technique. Due to this trick we get a symmetric, positive definite matrix.
- Able to apply \mathcal{H} -matrices after we have found a way to compute the \mathcal{H} -matrix approximation towards of the **curl curl** + $\sigma \omega$ part of the matrix

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thanks for your Attention!!!