Zurich University of Applied Sciences





#### Advanced Simulation Methods for Charge Transport in OLEDs

Evelyne Knapp, B. Ruhstaller

**Overview** 

- **1. Introduction**
- 2. Physical Models
- **3. Numerical Methods**
- 4. Outlook

www.icp.zhaw.ch





 Interdisciplinary team of 8 physicists, 4 mathematicians und 3 engineers





1996 Section NMSA2002 Foundation CCP2007 Foundation ICP

Spin-offs: Numerical Modeling GmbH, www.nmtec.ch Fluxim AG, www.fluxim.com





- The main focus is applied research and development in the following areas:
  - > Micro systems, sensors, actors
  - > Fuel cells
  - Organic optoelectronic and photovoltaics
  - Simulation software















#### Advanced Experimentally Validated OLED model





## **Principle of OLED Operation**





Fundamental Processes:

- 1. Charge Injection
- 2. Charge Carrier Transport
- 3. Exciton Formation
- 4. Radiative Decay
- 5. Light Extraction

Real stack consists of up to 12 layers!





- Novel physical models require better numerical methods
- Transient simulations and IV curves need multiple simulations
- Efficient simulations are crucial

FVIOM



#### **Overview-Task list**

- ✓ Modeling of charge carrier transport
  - > Gummel solver
  - > Newton solver
- ✓ Bipolar
- ✓ Injection
- ✓ Organic material properties
  - Disorder (Gaussian DOS)
  - > Mobility
  - > Generalized Einstein relation
- ✓ Traps (Exponential DOS)
- ✓ Multilayer OLEDs
- Exciton dynamics
- Parameter extraction
- Coupling to optical model
- Impedance simulations





**Gaussian Disorder** 



- Small molecules and polymer LEDs/solar cells
- Charge transport by hopping between uncorrelated sites
- Width of DOS-disorder parameter  $\sigma$  (50-150 meV)

$$DOS(\epsilon) = \frac{N_t}{\sqrt{2\pi\sigma}} \exp\left[-\left(\frac{\epsilon - \epsilon_0}{\sqrt{2}\sigma}\right)^2\right]$$



Poisson equation:

$$\epsilon \Delta \psi = q(n-p)$$

Continuity equation:

$$\nabla \cdot J_p + q \frac{\partial p}{\partial t} = -qR(p,n)$$

Drift-Diffusion:  $J_p = -q\mu_p p \nabla \psi - qD_p \nabla p$ 

similar for electrons





Poisson equation:

$$\epsilon \Delta \psi = q(n-p)$$

Continuity equation:

$$\nabla \cdot J_p + q \frac{\partial p}{\partial t} = -qR(p,n)$$

**Drift-Diffusion:** 

similar for electrons

# AEVIOM

#### **Generalized Einstein Relation**



### **Generalized Einstein Relation**



Institute of Computational Physics

AEVIOM

## **Generalized Einstein Relation**



Institute of Computational Physics

AEVIOM



#### Extended Gaussian Disorder Model (EGDM)



$$D_p = \frac{k_B T}{q} \mu_0(T, p, F) g_3(p, T)$$

 $\mu_p(T, p, F) = \mu_0(T)g_1(p, T)g_2(F, T)$ 



Nonlinear equations for mobility and diffusion coefficient

Mobility depends on temperature, field and density

S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78, 085207 (2008)





Assumption of ohmic contact: Dirichlet boundary conditions

$$n_1 = 0.5N_t$$
$$n_2 = 0.5N_t$$
$$16V$$







Assumption of ohmic contact: Dirichlet boundary conditions

$$n_1 = 0.5N_t$$
$$n_2 = 0.5N_t$$
$$16V$$







Assumption of ohmic contact: Dirichlet boundary conditions

$$n_1 = 0.5N_t$$
$$n_2 = 0.5N_t$$
$$16V$$







Assumption of ohmic contact: Dirichlet boundary conditions

$$n_1 = 0.5N_t$$
$$n_2 = 0.5N_t$$
$$16V$$









- Diffusion effects
- Field- and density-dependent

Effects of different disorder parameters

In good agreement with:

S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78, 085207 (2008, Fig 9)



#### **Recombination Profiles**





- Bipolar simulation with constant mobility and EGDM for  $\hat{\sigma}=3$  and  $\,\hat{\sigma}=6$
- Effects of disorder clearly visible



#### **Thermionic Injection**



Institute of Computational Physics

AEVIOM







#### **Thermionic Injection**













#### **Thermionic Injection**





Density at contact depends on position of Gaussian DOS

Dependent boundary conditions



#### **Effects of Injection**





- No effect if injection barrier < 0.5 eV
- Higher currents with image potential
- Agrees with Monte Carlo results

In good agreement with:

J.J.M. van der Holst, M.A. Uijttewaal, R. Balasubramanian, R. Coehoorn, P.A. Bobbert, G.A. de Wijs and R.A. de Groot (EUT, PRE), Phys. Rev. B (2009).



- localized sites with higher electron affinity
  - > impurities, chemical defects
- Model
  - > trap distribution: Expontential, Gaussian
  - > discrete levels: shallow, deep



$$\epsilon \Delta \psi = q(n - p + n_t - p_t)$$
$$\nabla \cdot J_p + q \frac{\partial p}{\partial t} = -qR(p, n)$$
$$J_p = -q\mu_p p \nabla \psi - qD_p \nabla p$$



#### **Trap IV Curves**





trap density influences current density

Analytical solution for Gaussian DOS:

M. M. Mandoc, B. de Boer, G. Paasch, P. W. M. Blom, Phys. Rev. B (2007).





Stack of organic material to optimize recombination profiles and light emission



Institute of Computational Physics



#### **Spatial Discretization**

- 1-dimensional finite volume method
  - > Domain divided into n grid points



• Reformulation of problem

$$F_{1}(\psi, p, n) = \epsilon \Delta \psi - q(n - p) \stackrel{!}{=} 0$$
  

$$F_{2}(\psi, p, n) = \nabla \cdot (-q\mu_{p}p\nabla\psi - qD_{p}\nabla p) + q\frac{\partial p}{\partial t} + qR \stackrel{!}{=} 0$$
  

$$F_{3}(\psi, p, n) = \nabla \cdot (-q\mu_{n}n\nabla\psi + qD_{n}\nabla n) - q\frac{\partial n}{\partial t} - qR \stackrel{!}{=} 0$$

• Integration over each box



#### Scharfetter-Gummel Discretization



 Neglecting recombination and assuming a constant current density through the device

$$q\mu_n(U_t\frac{\partial n}{\partial x} - n\frac{\partial \psi}{\partial x}) = c$$

- Boundary values  $n(x_{i-1}) = n_{i-1}$  and  $n(x_i) = n_i$
- Analytic solution

$$n(x) = n_{i-1}(1 - g(x)) + n_i g(x)$$

with

$$g(x) = \frac{1 - \exp\left(\frac{(\psi_i - \psi_{i-1})}{U_t} \frac{x - x_{i-1}}{x_i - x_{i-1}}\right)}{1 - \exp\left(\frac{\psi_i - \psi_{i-1}}{U_t}\right)}$$

- Analytic solution serves as Ansatz function
  - > Scharfetter-Gummel discretization





 $\langle \eta \rangle_1 \setminus$ 

- Exponential fitting for drift-diffusion (F2 and F3)
  - Scharfetter-Gummel discretization with generalized Einstein relation and density- and fielddependent mobility
- System of (3 x n) strongly coupled equations

$$\vec{F}(\vec{x}) = \begin{pmatrix} \vec{F_1}(\vec{x}) \\ \vec{F_2}(\vec{x}) \\ \vec{F_3}(\vec{x}) \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} \vdots \\ \psi_n \\ n_1 \\ \vdots \\ n_n \\ p_1 \\ \vdots \\ p_n \end{pmatrix}$$

- Dirichlet boundary conditions:
  - > Values for potential and carriers given at electrodes



- Variables sets
  - > carrier concentrations  $(\psi, p, n)$
  - > quasi-Fermi level  $(\psi, \phi_p, \phi_n)$ 
    - Assumption: Boltzmann statistics

$$p = n_{int,eff} \exp\left(\frac{q(\phi_p - \psi)}{kT}\right)$$
$$n = n_{int,eff} \exp\left(\frac{q(\psi - \phi_n)}{kT}\right)$$
$$\Phi$$

> Slotboom  $(\psi, \Phi_p, \Phi_n)$ 

$$\Phi_p = \exp\left(\frac{q\phi_p}{kT}\right) \qquad p = p_i \Phi_p \exp\left(\frac{-q\psi}{kT}\right)$$
$$\Phi_n = \exp\left(\frac{-q\phi_n}{kT}\right) \qquad n = n_i \Phi_n \exp\left(\frac{q\psi}{kT}\right)$$





#### **Discretized Equations**



> Gummel algorithm



- Coupled solving
  - > Newton algorithm

Find  $x^*$  so that  $F(x^*)=0$ .

$$F(x) = F(x^{*}) + J(x^{*})(x - x^{*})$$
$$J(x) = \begin{bmatrix} \frac{\partial F_{1}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{1}(x)}{\partial x_{N}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{N}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{N}(x)}{\partial x_{N}} \end{bmatrix}$$
$$\Rightarrow x^{k+1} = x^{k} - J(x^{k})^{-1}F(x^{k})$$

Taylor Series

Jacobian Matrix



Iteration function





#### **Algorithms**



- Gummel
  - > steady-state
  - > transient
- Newton
  - > steady-state
  - > transient
- Initial guess
  - > no bias applied, Boltzmann approximation
- Gummel steady-state
  - > Damping
- Newton
  - > Damping
  - > Homotopy









- Convergence for Gummel and Newton algorithm
- Fewer iterations needed for Newton algorithm



#### **Transient Simulations**



• Implicit Euler time step







zh aw

- ✓ Modeling of charge carrier transport
  - > Gummel solver
  - > Newton solver
- ✓ Bipolar
- ✓ Injection
- ✓ Organic material properties
  - Disorder (Gaussian DOS)
  - > Mobility
  - > Generalized Einstein relation
- ✓ Traps (Exponential DOS)
- ✓ Multilayer OLEDs
- Exciton dynamics
- Parameter extraction
- Coupling to optical model
- Impedance simulations



#### **Exciton Dynamics**





Extended version of the models published by Ruhstaller et al., J. Appl. Phys. **89**, 4575, (2001) and Ruhstaller et al., IEEE JSTQE **9**, (3) 723, (2003)







- ✓ Modeling of charge carrier transport (1st generation)
  - > Gummel
  - > Newton
- ✓ Bipolar (1st generation)
- ✓ Injection (2nd generation)
- ✓ Organic material properties
  - > Disorder (2nd generation)
  - Mobility (2n generation)
  - Generalized Einstein relation (2nd generation)
- ✓ Traps (2nd generation)
- ✓ Multilayer OLEDs (1st generation)
- Exciton dynamics (1st generation)
- Parameter extraction
- Optical simulations
- Impedance simulations





- We acknowledge the financial support of RF7
- Thanks for your attention!