


FLUXiM

Advanced Simulation Methods for Charge 
Transport in OLEDs

Evelyne Knapp, B. Ruhstaller

www.icp.zhaw.ch

Overview

1. Introduction
2. Physical Models
3. Numerical Methods
4. Outlook



Institute of Computational Physics                                            

ICP Team
• Interdisciplinary team of 8 physicists, 

4 mathematicians und 3 engineers

1996 Section NMSA   Spin-offs: 

2002 Foundation CCP   Numerical Modeling GmbH, www.nmtec.ch 
2007 Foundation ICP   Fluxim AG, www.fluxim.com 



Institute of Computational Physics                                            

Research Activities

• The main focus is applied research and 
development in the following areas:
› Micro systems, sensors, actors
› Fuel cells
› Organic optoelectronic and photovoltaics
› Simulation software
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Principle of OLED Operation

Anode Cathode EML 
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Fundamental Processes:

1. Charge Injection
2. Charge Carrier Transport
3. Exciton Formation
4. Radiative Decay
5. Light Extraction

Real stack consists of up to 12 layers!
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Simulation of Organic LEDs

• Novel physical models require better numerical methods

• Transient simulations and IV curves need multiple simulations

➡ Efficient simulations are crucial

Experimental data from CSEM, simulation by ICP

HOMO!

LUMO!

Anode!

Cathode !
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Overview-Task list
✓ Modeling of charge carrier transport 

› Gummel solver
› Newton solver

✓ Bipolar 
✓ Injection 
✓ Organic material properties

› Disorder (Gaussian DOS)
› Mobility 
› Generalized Einstein relation 

✓ Traps (Exponential DOS)
✓ Multilayer OLEDs 
• Exciton dynamics 
• Parameter extraction
• Coupling to optical model
• Impedance simulations



DOS(ε) =
Nt√
2πσ
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[
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Organic Materials

Energy 

LUMO 

HOMO 

• Small molecules and polymer 
LEDs/solar cells

• Charge transport by hopping 
between uncorrelated sites

• Width of DOS-disorder parameter 
σ (50-150 meV)

Gaussian Disorder

LUMO

HOMO
                

                

DOS



ε∆ψ = q(n− p)

Jp = −qµpp∇ψ − qDp∇p

∇ · Jp + q
∂p

∂t
= −qR(p, n)
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Governing Equations in OLEDs

Poisson equation:

Continuity equation:

Drift-Diffusion:

similar for electrons



ε∆ψ = q(n− p)

Jp = −qµpp∇ψ − qDp∇p

Institute of Computational Physics                                            

Governing Equations in OLEDs

Poisson equation:

Continuity equation:

Drift-Diffusion:

similar for electrons

mobility diffusion coefficient&

are affected by the Gaussian DOS!

∇ · Jp + q
∂p

∂t
= −qR(p, n)
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Generalized Einstein Relation

E

DOS(E), f(E)

ordered material

DOS

Statistics Boltzmann

Einstein relation
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Generalized Einstein Relation

E

DOS(E), f(E)

ordered material disordered 
material

DOS Gaussian

Statistics Boltzmann Fermi-Dirac

Einstein relation
D

µ
=

p

q ∂p
∂EF
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Generalized Einstein Relation

E

DOS(E), f(E)

ordered material disordered 
material

DOS Gaussian

Statistics Boltzmann Fermi-Dirac

Einstein relation



Dp =
kBT

q
µ0(T, p, F )g3(p, T )

g3(p, T )g2(F, T )

µp(T, p, F ) = µ0(T )g1(p, T )g2(F, T )
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Extended Gaussian Disorder 
Model (EGDM)

Nonlinear equations for mobility and diffusion coefficient

 Mobility depends on temperature, field and density

S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78,
 085207 (2008)

g1(p, T )



n1 = 0.5Nt

n2 = 0.5Nt

16V
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Effects of EGDM Transport
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Assumption of ohmic contact:
Dirichlet boundary conditions

Effects of EGDM Transport
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Effects of EGDM Transport
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EGDM on single layer OLED

In good agreement with:
S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78,
085207 (2008, Fig 9)

IV Curve
(hole-only device)

IV Curve
(hole-only device with 1eV built-in 

potential)

σ

kBT
= 6

σ

kBT
= 3

• Diffusion effects
• Field- and density-dependent • Effects of different disorder parameters
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Recombination Profiles

• Bipolar simulation with constant mobility and EGDM for             and 

• Effects of disorder clearly visible
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Thermionic Injection

Φe

metal organic

Contact Region 

Fermi energy
workfunction

LUMO
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Thermionic Injection

Φe

Φimage =
e2

16πεε0

1
x

metal organic

Contact Region 

Fermi energy
workfunction

LUMO
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Thermionic Injection

Φe

metal organic

Contact Region 
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Thermionic Injection

Φe

metal organic

Fermi energy
workfunction

LUMO
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Thermionic Injection

metal organicmetal organic

Density at contact depends on position of Gaussian DOS

Dependent boundary conditions

LUMO



Institute of Computational Physics                                            

Effects of Injection
Dependence of the current 

density on the injection barrier 
at 2V

In good agreement with: 
J.J.M. van der Holst, M.A. Uijttewaal, R. Balasubramanian, R. 
Coehoorn, P.A. Bobbert, G.A. de Wijs and R.A. de Groot (EUT, 
PRE), Phys. Rev. B (2009).

• No effect if injection barrier < 0.5 eV
• Higher currents with image potential
• Agrees with Monte Carlo results
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Trap Effects in OLEDs

• localized sites with higher electron affinity 
› impurities, chemical defects

• Model
› trap distribution: Expontential, Gaussian
› discrete levels: shallow, deep 

by traps of ever decreasing energy, equivalent to increasing the effective carrier mobility.
Although adding significantly to the experimental burden, an effective test for SCLC is
to establish the sensitivity to the sample thickness (see equations (1) and (5)). Both the
single-trap and distributed-trap cases may be further developed to include a Poole-Frenkel
reduction of the trap depth

HISTORY OF TRAPS Traps are considered as energy states that are within the energy
gap. Even when an electric field is applied carriers in trap stay stationary and have a
low escaping probability. After successfully fitting IV-curves in case of hole transport for
the EGDM the model does not describe the behaviour of electron transport correctly as
it is affected by the presence of traps. The trapped electrons do not contribute to the
current and therefore a lower current is obtained as the electrons are captured temporarily
by their trap states. In this paper traps are taken into account when modeling electron
transport. The density of states (DOS) is described as a superposition of a Gaussian DOS
N(E) = Nt√

2πσ2 exp (− E2

2σ2 ) and an exponential DOS g(E) = Nt,e

kT0
exp ( E

kT0
) which includes

all trap states as explained in (12). The field and density dependent mobility is adapted
to the Gaussian part of the density of states. In Fig. the total density and its components
are displayed. However the values to not correspond to realistic parameters and are only
suitable for visualization. The exponential part symbolizes the trap distribution while the
mobile carriers are in the Gaussian. Depending on the parameters that describe the DOS
and the Fermi energy the presence of traps for electrons can almost be neglected or have
a strong influence. The EGDM is applied to the free movable electrons while the trapped

energy

D
O

S

 

 
exponential DOS

Gaussian DOS

total DOS

Figure 2: Illustration of DOS. The exponential DOS represents the trap states while the Gaussian
contains the mobile carriers. They add up to the total DOS.

electrons are neglected and considered as immobile. The Fermi energy determines the filling
of the superposed DOS. This trap model can also be used to simulate host and guest systems
paying attention to the fact that transport takes place in the host states and between the host
and guest states. Hopping transport from guest to guest in the guest material is neglected
and therefore small guest concentrations are assumed.

2.6 Recombination of Holes and Electrons

Carrier recombination is crucial for light emission from a device and affects also the IV-
Curves. Coulomb forces between electrons and holes bring them together and is the main
reason for recombination. The carrier mobility determines the rate of recombination depen-
dent on the position. The model is based on the Langevin recombination of carriers. The
hole and electron recombination is a random bimolecular process. The total recombination

6

ε∆ψ = q(n− p + nt − pt)

Jp = −qµpp∇ψ − qDp∇p

∇ · Jp + q
∂p

∂t
= −qR(p, n)
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Trap IV Curves
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Analytical solution for Gaussian DOS: 
M. M. Mandoc, B. de Boer, G. Paasch, P. W. M. Blom, Phys. Rev. B 
(2007).

trap density influences current density

simulation

experiment

analytic
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Multi-layer Devices

• Stack of organic material to optimize recombination profiles and light 
emission
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Spatial Discretization

• 1-dimensional finite volume method 
› Domain divided into n grid points 

• Reformulation of problem

• Integration over each box 

Anode Cathode

F1(ψ, p, n) = ε∆ψ − q(n− p) != 0

F2(ψ, p, n) = ∇ · (−qµpp∇ψ − qDp∇p) + q
∂p

∂t
+ qR

!= 0

F3(ψ, p, n) = ∇ · (−qµnn∇ψ + qDn∇n)− q
∂n

∂t
− qR

!= 0
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Scharfetter-Gummel 
Discretization

• Neglecting recombination and assuming a constant current density through 
the device

• Boundary values                      and 
• Analytic solution

• Analytic solution serves as Ansatz function
› Scharfetter-Gummel discretization
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Spatial Discretization

• Exponential fitting for drift-diffusion (F2 and F3)
› Scharfetter-Gummel discretization with generalized Einstein relation 

and density- and fielddependent mobility

• System of (3 x n) strongly coupled equations

• Dirichlet boundary conditions:
› Values for potential and carriers given at electrodes

!x =





ψ1

:
ψn

n1

:
nn

p1

:
pn





!F (!x) =




!F1(!x)
!F2(!x)
!F3(!x)
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Problem Formulation

• Variables sets
› carrier concentrations
› quasi-Fermi level

• Assumption: Boltzmann statistics

› Slotboom

(ψ, p, n)
(ψ,φp, φn)

(ψ, Φp,Φn)

p = nint,eff exp
(

q(φp − ψ)
kT

)

n = nint,eff exp
(

q(ψ − φn)
kT

)

Φp = exp
(

qφp

kT

)

Φn = exp
(
−qφn

kT

)
n = niΦn exp

(
qψ

kT

)
p = piΦp exp

(
−qψ

kT

)
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Discretized Equations

• De-coupled solving
› Gummel algorithm

• Coupled solving
› Newton algorithm

}

  

! 

F(x) = F(x
*
) + J(x

*
)(x " x

*
)                Taylor Series
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#F
1
(x)

#x
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1
(x)
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#FN (x)
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            Jacobian Matrix

* x
k +1

= x
k " J(x

k
)
"1

F(x
k
)                Iteration function

Find x* so that F(x*)=0.

F3 F2 F1

}F1

F2
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Algorithms

• Gummel 
› steady-state 
› transient

• Newton 
› steady-state 
› transient

• Initial guess
› no bias applied, Boltzmann approximation

• Gummel steady-state
› Damping

• Newton
› Damping
› Homotopy
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Convergence - Steady State

L2-Norm:

Gummel

Newton
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Convergence - Steady State

• Convergence for Gummel and Newton algorithm
• Fewer iterations needed for Newton algorithm
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Transient Simulations

• Implicit Euler time step
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Outlook
✓ Modeling of charge carrier transport 

› Gummel solver
› Newton solver

✓ Bipolar 
✓ Injection 
✓ Organic material properties

› Disorder (Gaussian DOS)
› Mobility 
› Generalized Einstein relation 

✓ Traps (Exponential DOS)
✓ Multilayer OLEDs 
• Exciton dynamics 
• Parameter extraction
• Coupling to optical model
• Impedance simulations



•! Poisson Equation 

•! Charge Current 

•! Charge Continuity 

•! Exciton Current 

•! Exciton Continuity 

•! Light-emission (from dipoles) &  
Light-incoupling 

Electro-optical Coupling Terms 

Opto-electronic Coupling Terms 
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Exciton Dynamics

Extended version of the models published by Ruhstaller et al., J. Appl. Phys. 89, 

4575, (2001) and Ruhstaller et al., IEEE JSTQE 9, (3) 723, (2003) 
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Outlook

✓ Modeling of charge carrier transport (1st generation)
› Gummel
› Newton

✓ Bipolar (1st generation)
✓ Injection (2nd generation)
✓ Organic material properties

› Disorder (2nd generation)
› Mobility (2n generation)
› Generalized Einstein relation (2nd generation)

✓ Traps (2nd generation)
✓ Multilayer OLEDs (1st generation)
• Exciton dynamics (1st generation)
• Parameter extraction
• Optical simulations
• Impedance simulations
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