Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



# Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect

#### Paolo Corti

joint work with Siddhartha Mishra

ETH Zurich, Seminar for Applied Mathematics

#### 17-19th August 2011, Pro\*Doc Retreat, Disentis Abbey



### Outline

Formulation and motivation of the problem

- Theoretical analysis
- Numerical methods
- Time integration
- DG Formulation

### **Magnetic Reconnection**

#### Change in topology of the magnetic field



Figure: Schematic of a reconnection.

Magnetic energy ⇒ kinetic and thermal energy
 Dissipation

# MHD Equations

-

The equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{u}) \\ \frac{\partial (\rho \mathbf{u})}{\partial t} &= -\nabla \left\{ \rho \mathbf{u} \mathbf{u}^\top + \left( p + \frac{\mathbf{B}^2}{2} \right) \mathbf{I}_{3 \times 3} - \mathbf{B} \mathbf{B}^\top \right\} \\ \frac{\partial \mathcal{E}}{\partial t} &= -\nabla \left\{ \left( \mathcal{E} + p - \frac{B^2}{2} \right) \mathbf{u} + \mathbf{E} \times \mathbf{B} \right\} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \end{aligned}$$

are coupled through the equation of state

$$\mathcal{E} = \frac{p}{\gamma - 1} + \frac{\rho \mathbf{u}^2}{2} + \frac{B^2}{2}$$

To complete the formulation of the problem we need to state some equation for E

#### Ideal MHD

Standard model for *E*: Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B}$$

Problem: no dissipation  $\Rightarrow$  "frozen" condition.

#### Ideal MHD

Standard model for *E*: Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B}$$

Problem: no dissipation  $\Rightarrow$  "frozen" condition. We need to add dissipation Resistive MHD:

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} - \eta \mathbf{J}$$

not sufficient for fast reconnection.

#### Ideal MHD

Standard model for *E*: Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B}$$

Problem: no dissipation  $\Rightarrow$  "frozen" condition. We need to add dissipation Resistive MHD:

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} - \eta \mathbf{J}$$

not sufficient for fast reconnection.

We need another model...

Numerical simulation and laboratory experiment  $\Rightarrow$  Hall Effect

### Generalized Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\delta_i}{L_0} \frac{\mathbf{J} \times \mathbf{B}}{\rho} - \frac{\delta_i}{L_0} \frac{\nabla \overset{\leftrightarrow}{\rho}}{\rho} + \left(\frac{\delta_e}{L_0}\right)^2 \frac{1}{\rho} \left[\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{J}\right]$$

Generalized Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\delta_i}{L_0} \frac{\mathbf{J} \times \mathbf{B}}{\rho} - \frac{\delta_i}{L_0} \frac{\nabla \overset{\leftrightarrow}{\rho}}{\rho} + \left(\frac{\delta_e}{L_0}\right)^2 \frac{1}{\rho} \left[\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{J}\right]$$

Electron inertia

ETH

Generalized Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\delta_i}{L_0} \frac{\mathbf{J} \times \mathbf{B}}{\rho} - \frac{\delta_i}{L_0} \frac{\nabla \overset{\leftrightarrow}{\rho}}{\rho} + \left(\frac{\delta_e}{L_0}\right)^2 \frac{1}{\rho} \left[\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{J}\right]$$

Resistivity

Hall effect

Electron pressure

Electron inertia

J is the electric current given by Ampère's law

$$\mathbf{J} = 
abla imes \mathbf{B}$$

X.Qian, J.Bablás, A. Bhattacharjee, H.Yang (2009)

#### Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

- Generalized Ohm law
- Ampère's law
- $\blacksquare \stackrel{\leftrightarrow}{p}$  isotropic.

ETH

#### Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Generalized Ohm law

Ampère's law

**\overrightarrow{p}** isotropic.

Are combined to obtain

$$\frac{\partial}{\partial t} \left[ \mathbf{B} + \left(\frac{\delta_{\mathbf{e}}}{L_0}\right)^2 \frac{1}{\rho} \nabla \times (\nabla \times \mathbf{B}) \right] = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times (\nabla \times \mathbf{B}) \\ - \left(\frac{\delta_{\mathbf{e}}}{L_0}\right)^2 \frac{1}{\rho} \nabla \times ((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B})) - \frac{\delta_i}{L_0} \frac{1}{\rho} \nabla \times ((\nabla \times \mathbf{B}) \times \mathbf{B})$$

#### Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Generalized Ohm law

- Ampère's law
- **\overrightarrow{p}** isotropic.

Are combined to obtain

$$\frac{\partial}{\partial t} \left[ \mathbf{B} + \left( \frac{\delta_{\mathbf{e}}}{L_0} \right)^2 \frac{1}{\rho} \nabla \times (\nabla \times \mathbf{B}) \right] = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times (\nabla \times \mathbf{B}) \\ - \left( \frac{\delta_{\mathbf{e}}}{L_0} \right)^2 \frac{1}{\rho} \nabla \times ((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B})) - \frac{\delta_i}{L_0} \frac{1}{\rho} \nabla \times ((\nabla \times \mathbf{B}) \times \mathbf{B})$$

This equation preserve the divergence of the magnetic field

$$rac{d}{dt}(
abla\cdot {f B})=0$$

### Symmetrized Equation

Using the identity

 $\nabla \times (\mathbf{u} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{u} - \mathbf{B}(\nabla \cdot \mathbf{u}) + \mathbf{u}(\nabla \cdot \mathbf{B}) - (\mathbf{u} \cdot \nabla)\mathbf{B}$ 

# Symmetrized Equation

Using the identity

$$abla imes (\mathbf{u} imes \mathbf{B}) = (\mathbf{B} \cdot 
abla) \mathbf{u} - \mathbf{B} (
abla \cdot \mathbf{u}) + \mathbf{u} (
abla \cdot \mathbf{B}) - (\mathbf{u} \cdot 
abla) \mathbf{B}$$

Since the magnetic field is solenoidal  $\nabla \cdot \mathbf{B} = 0$  we subtract  $\mathbf{u}(\nabla \cdot \mathbf{B})$ to the right side of the equation

$$\frac{\partial}{\partial t} \left[ \mathbf{B} + \left( \frac{\delta_{\mathbf{e}}}{L_0} \right)^2 \nabla \times (\nabla \times \mathbf{B}) \right] = (\mathbf{B} \cdot \nabla) \mathbf{u} - \mathbf{B} (\nabla \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{B} - \eta \nabla \times (\nabla \times \mathbf{B}) \\
- \left( \frac{\delta_{\mathbf{e}}}{L_0} \right)^2 \frac{1}{\rho} \nabla \times ((\mathbf{u} \cdot \nabla) (\nabla \times \mathbf{B})) - \frac{\delta_i}{L_0} \frac{1}{\rho} \nabla \times ((\nabla \times \mathbf{B}) \times \mathbf{B}) \quad (1)$$

 $\Omega \subset \mathbb{R}^3$  is a smooth domain  $\partial \Omega_{in} = \{ x \in \partial \Omega | \mathbf{n} \cdot \mathbf{u} < 0 \}$  is the inflow boundary. Natural BC

$$\mathbf{B} \times \mathbf{n} = 0 \quad \text{on } \partial \Omega \backslash \partial \Omega_{in} \tag{2}$$

Inflow BC

$$\mathbf{B} = 0 \quad \text{on } \partial\Omega_{in}$$
$$\mathbf{J} = 0 \quad \text{on } \partial\Omega_{in}$$
(3)

#### Theorem

For  $\mathbf{u} \in C^2(\Omega)$  and **B** solution of (??) satisfying (??) and (??), then this estimate holds

$$\frac{d}{dt} \left( \|\mathbf{B}\|_{L^{2}(\Omega)}^{2} + \left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \|\nabla \times \mathbf{B}\|_{L^{2}(\Omega)}^{2} \right) \\
\leq C_{1} \left( \|\mathbf{B}\|_{L^{2}(\Omega)}^{2} + \left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \|\nabla \times \mathbf{B}\|_{L^{2}(\Omega)}^{2} \right)$$
(4)

with  $C_1$  a constant that depend on **u** and its derivative only.

#### Additional Boundary condition

$$\nabla \cdot \mathbf{B} = 0 \quad \text{on } \partial \Omega_{in} \tag{5}$$

#### Theorem

For  $\mathbf{u} \in C^2(\Omega)$  and **B** solution of (??) satisfying (??),then this estimate holds

$$\frac{d}{dt} \| \nabla \cdot \mathbf{B} \|_{L^2(\Omega)} \le C_2 \| \nabla \cdot \mathbf{B} \|_{L^2(\Omega)}$$
(6)

with  $C_2$  a constant that depend on **u** and its derivative only.

#### Remark

If the solution satisfy all the three boundary conditions, then  $\boldsymbol{\mathsf{B}}\in H^1(\Omega)$ 

# **Numerical Formulation**

Semi-discrete formulation

$$\frac{d}{dt}\left(\hat{\mathbf{B}}(t) + \mathbf{D} \times \mathbf{D} \times \hat{\mathbf{B}}(t)\right) = R(\hat{\mathbf{B}}(t), \hat{\mathbf{u}})$$

where  $\hat{\mathbf{B}}$  and  $\hat{\mathbf{u}}$  are grid functions.

Discretize the space with **D**×.

Resulting system of ODE satisfies similar estimates as the one we have for the continuous case.

### **Numerical Formulation**

Semi-discrete formulation

$$\frac{d}{dt}\left(\hat{\mathbf{B}}(t) + \mathbf{D} \times \mathbf{D} \times \hat{\mathbf{B}}(t)\right) = R(\hat{\mathbf{B}}(t), \hat{\mathbf{u}})$$

where  $\hat{\mathbf{B}}$  and  $\hat{\mathbf{u}}$  are grid functions.

**Discretize the space with**  $\mathbf{D} \times$ **.** 

Resulting system of ODE satisfies similar estimates as the one we have for the continuous case.

Integrate on time with Runge Kutta Method We have to compute a matrix inversion!

### **Discrete Operator**

• One dimensional  $D_x$  with summation by parts

$$D_x = P_x^{-1} Q \quad Q^\top + Q = \operatorname{diag}(-1, 0, \cdots, 0, 1)$$

 $P_x \text{ diagonal positive definite matrix.}$  $⇒ <math>(D_x \hat{v}, \hat{w})_{P_x} = -(\hat{v}, D_x \hat{w})_{P_x} + v_N w_N - v_0 w_0.$  ■ Multidimensional operators

$$\mathfrak{d}_x = D_x \otimes I_y \otimes I_z$$

### Summation by Parts

Writing the differential operator as

$$\mathbf{D} = \left(\begin{array}{c} \mathfrak{d}_{\mathbf{x}} \\ \mathfrak{d}_{\mathbf{y}} \\ \mathfrak{d}_{\mathbf{z}} \end{array}\right)$$

#### Lemma

$$\begin{aligned} (\hat{\boldsymbol{v}}, \mathbf{D}\hat{\boldsymbol{w}})_{\mathbf{P}} &= -(\mathbf{D}\hat{\boldsymbol{v}}, \hat{\boldsymbol{w}})_{\mathbf{P}} + B.T\\ (\hat{\mathbf{v}}, \mathbf{D} \times \hat{\mathbf{w}})_{\mathbf{P}} &= (\mathbf{D} \times \hat{\mathbf{v}}, \hat{\mathbf{w}})_{\mathbf{P}} + B.T\\ (\hat{\mathbf{v}}, (\hat{\mathbf{u}} \cdot \mathbf{D})\hat{\mathbf{v}}))_{\mathbf{P}} &\leq C \|\hat{\mathbf{v}}\|_{\mathbf{P}} + B.T \end{aligned}$$

### Numerical Scheme

$$\frac{\partial}{\partial t} \left[ \hat{\mathbf{B}} + \left( \frac{\delta_{e}}{L_{0}} \right)^{2} \mathbf{D} \times (\mathbf{D} \times \hat{\mathbf{B}}) \right] = \mathcal{ADV}(\hat{\mathbf{u}}, \hat{\mathbf{B}}) - \eta \mathbf{D} \times (\mathbf{D} \times \hat{\mathbf{B}}) - \left( \frac{\delta_{e}}{L_{0}} \right)^{2} \frac{1}{\rho} \mathbf{D} \times ((\hat{\mathbf{v}} \cdot \mathbf{D}) \hat{\mathbf{B}}) - \frac{\delta_{i}}{L_{0}} \frac{1}{\rho} \mathbf{D} \times \left( (\mathbf{D} \times \hat{\mathbf{B}}) \times \hat{\mathbf{B}} \right)$$
(7)

 $\hat{\textbf{B}}$  decays to zero st infinity  $\Rightarrow$  neglect boundary terms. Assuming that  $\mathcal{ADV}$  satisfy

Lemma

$$(\hat{\mathbf{B}}, \mathcal{ADV}(\hat{\mathbf{u}}, \hat{\mathbf{B}}))_{\mathbf{P}} \le C \|\hat{\mathbf{B}}\|_{\mathbf{P}}^{2}$$
 (8)

#### Theorem

Solution of (??) with condition (??), satisfy

$$\begin{split} \frac{d}{dt} \left( \|\hat{\mathbf{B}}\|_{\mathbf{P}}^{2} + \left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \|\mathbf{D} \times \hat{\mathbf{B}}\|_{\mathbf{P}}^{2} \right) \\ &\leq C_{1} \left( \|\hat{\mathbf{B}}\|_{\mathbf{P}}^{2} + \left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \|\mathbf{D} \times \hat{\mathbf{B}}\|_{\mathbf{P}}^{2} \right) \end{split}$$

can be shown using the same technique used in the continuous case.

# Approximated Chain Rule

#### Lemma (Mishra, Svärd)

Let  $\bar{u}$  be a restriction of  $u \in C^2(\Omega)$ , then there is a special average operator  $\bar{A}_x$ , such that

$$D_x(\bar{u}w) = \bar{u}D_x(w) + \bar{u}_x\bar{A}_x(w) + \tilde{w}$$

where  $\|\tilde{w}\|_{P_x} \leq C\Delta x \|w\|_{P_x}$ 

Average operators

$$\bar{\mathcal{A}}_x = \bar{\mathcal{A}}_x \otimes \mathcal{I}_y \otimes \mathcal{I}_z$$

### Symmetric Advection

$$\mathcal{ADV}(\hat{\mathbf{u}}, \hat{\mathbf{B}}) = (\bar{\mathcal{A}}(\hat{\mathbf{B}}) \cdot \mathbf{D})\hat{\mathbf{u}} - \bar{\mathcal{A}}_{x}(\hat{\mathbf{B}})\mathfrak{d}_{x}\hat{\mathbf{u}}^{1} - \bar{\mathcal{A}}_{y}(\hat{\mathbf{B}})\mathfrak{d}_{y}\hat{\mathbf{u}}^{2} - \bar{\mathcal{A}}_{z}(\hat{\mathbf{B}})\mathfrak{d}_{z}\hat{\mathbf{u}}^{3} - (\hat{\mathbf{u}} \cdot \mathbf{D})\hat{\mathbf{B}}$$
(9)

where 
$$\bar{\mathcal{A}}(\hat{\mathbf{B}}) = (\bar{\mathcal{A}}_x(\hat{B}^1), \bar{\mathcal{A}}_y(\hat{B}^2), \bar{\mathcal{A}}_z(\hat{B}^3))^\top$$
  
 $\Rightarrow$  (??) is valid

#### Theorem (Mishra, Svärd)

For numerical scheme with ADV defined as (??) we have

$$\frac{d}{dt} \| \mathbf{D} \cdot \hat{\mathbf{B}} \|_{\mathbf{P}} \leq C \left( \| \mathbf{D} \cdot \hat{\mathbf{B}} \|_{\mathbf{P}} + \| \hat{\mathbf{B}} \|_{\mathbf{P}} \right)$$

## **Divergence Preserving**

$$\mathcal{ADV}(\hat{\mathbf{u}}, \hat{\mathbf{B}}) = \mathbf{D} \times (\hat{\mathbf{u}} \times \hat{\mathbf{B}})$$
(10)

The operator  $\vartheta_x$ ,  $\vartheta_y$  and  $\vartheta_z$  commute  $\Rightarrow \mathbf{D} \cdot (\mathbf{D} \times \hat{\mathbf{w}}) = 0$ 

#### Lemma

Scheme (??) with (??) satisfy

$$\frac{d}{dt}\mathbf{D}\cdot\hat{\mathbf{B}}=0$$

Can we obtain (??) for (??)?

## **Divergence Preserving**

$$\mathcal{ADV}(\hat{\mathbf{u}}, \hat{\mathbf{B}}) = \mathbf{D} \times (\hat{\mathbf{u}} \times \hat{\mathbf{B}})$$
(10)

The operator  $\vartheta_x$ ,  $\vartheta_y$  and  $\vartheta_z$  commute  $\Rightarrow \mathbf{D} \cdot (\mathbf{D} \times \hat{\mathbf{w}}) = 0$ 

#### Lemma

Scheme (??) with (??) satisfy

$$\frac{d}{dt}\mathbf{D}\cdot\hat{\mathbf{B}}=0$$

Can we obtain (??) for (??)? If  $\mathbf{D} \cdot \hat{\mathbf{B}}_0 = 0$  yes, symmetrizing the problem.

# Time Integration

Semi-discrete formulation

$$rac{d}{dt}[(\mathbb{I}+\mathbb{A})\hat{\mathbf{B}}(t)]=\mathbf{R}(\hat{\mathbf{B}}(t),\hat{\mathbf{u}}(t))$$

Large dimension

$$\dim(\hat{\mathbf{B}}) = \dim(\mathbf{R}) = 3 \times N_x \times N_y \times N_z$$

A matrix: discrete curl curl operator
Time evolution has to invert this matrix, e.g. Euler method

$$\hat{\mathbf{B}}^{n+1} = \hat{\mathbf{B}}^n + \Delta t (\mathbb{I} + \mathbb{A})^{-1} \mathbf{R}(\hat{\mathbf{B}}(t), \hat{\mathbf{u}}(t))$$

#### joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

#### joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

**Restriction cell centered**  $\Rightarrow$  edge element

#### joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

- Restriction cell centered ⇒ edge element
- Multigrid solution

#### joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

- **Restriction cell centered**  $\Rightarrow$  edge element
- Multigrid solution
- Prolong back edge element⇒ cell centered

-

#### joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

- Restriction cell centered ⇒ edge element
- Multigrid solution
- Prolong back edge element⇒ cell centered

Prolongation  $\ensuremath{\mathbb{P}}$  should satisfy

 $\mathbb{P}(\text{ker}(\mathbb{A}_{\textit{FE}})) \subset \text{ker}(\mathbb{A}_{\textit{FD}})$ 

#### joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

■ Restriction cell centered ⇒ edge element

Multigrid solution

Prolong back edge element active cell centered

Prolongation  $\mathbb{P}$  should satisfy

 $\mathbb{P}(\ker(\mathbb{A}_{FE})) \subset \ker(\mathbb{A}_{FD})$ 

Problem:

A<sub>FE</sub> has a "local" kernel,

•  $\mathbb{A}_{FD}$  for  $\mathfrak{d}_x = D_x \otimes I_y$  has a "global" kernel!

Solution: Averages! For

$$\mathfrak{d}_x = D_x \otimes A_y$$

with a D a second order central difference and

$$Aw_i = \frac{w_{i+1} + 2w_i + w_{i-1}}{4}$$

in this case we have a compact kernel



Figure: Local Star Shaped Kernel of  $\mathbb{A}_{FD}$  in 2D.

#### Prolongation operator in 2D:

#### $\mathbb{P}^{\top}: \mathsf{FD}\ \mathsf{space} \to \mathsf{FE}\ \mathsf{conform}\ \mathsf{space}$



Figure. Schematic for

We have

 $\mathbb{P}(\mathsf{ker}(\mathbb{A}_{\mathit{FE}})) \subset \mathsf{ker}(\mathbb{A}_{\mathit{FD}})$ 

#### Prolongation operator in 2D:

#### $\mathbb{P}^{\top}: \mathsf{FD}\ \mathsf{space} \to \mathsf{FE}\ \mathsf{conform}\ \mathsf{space}$



Figure: Schematic for  $\mathbb{P}^{\top}$ .

We have

$$\mathbb{P}(\ker(\mathbb{A}_{FE})) \subset \ker(\mathbb{A}_{FD})$$

New Problem: dim(ker( $\mathbb{A}_{FD}$ ))  $\geq$  dim(ker( $\mathbb{A}_{FE}$ ))

#### Additonal modes prevent fast convergence. $\Rightarrow$ Cleaning



Figure: Algorithm with and without cancellation of bad modes.

Still not effective...

Still not effective... Soultion:

Same framework (FD): new  $\hat{D}$  and  $\hat{P}$ .

#### OR

**New formulation DG**  $\Rightarrow$  more suitable space.

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbb{U}_{1}\mathbf{B} + (\mathbf{u}\nabla)\mathbf{B} = -\nabla \times \tilde{\mathbf{E}}$$
$$\mathbf{J} = \nabla \times \mathbf{B}$$
$$\tilde{\mathbf{E}} = \eta \mathbf{J} + \alpha \mathbf{J} \times \mathbf{B} + \beta (\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u}\nabla)\mathbf{J})$$

 $\mathbb{U}_1$  depends on  $\frac{\partial u_i}{\partial x_j}$ ,  $\alpha = \frac{\delta_i}{L_0 \rho}$  and  $\beta = \frac{\delta_{\theta}^2}{L_0^2 \rho}$ 

#### Define

$$(v, w)_{\mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} \int_{K} v(x) w(x) \, dx$$
$$\langle v, w \rangle_{\mathsf{Faces}} = \sum_{f \in \mathsf{Faces}} \int_{e} v(x) w(x) \, ds$$

where  $T_h$  a triangulation of  $\Omega$ . Faces can be

- $\blacksquare \mathcal{F}_h$  set of faces in  $\mathcal{T}_h$ .
- $\blacksquare \mathcal{F}_h^{\mathcal{I}}$  set of inner faces in  $\mathcal{T}_h$ .
- $\square$   $\Gamma_h$  set of boundary faces in  $\mathcal{T}_h$ .
- $\square$   $\Gamma_h^+$  set of outflow boundary faces in  $\mathcal{T}_h$ .
- $\square$   $\Gamma_h^-$  set of inflow faces boundary in  $\mathcal{T}_h$ .

To have unique valued on faces we define:

- averages {.}
- normal jumps [.]<sub>N</sub>
- tangential jumps [[.]]<sub>T</sub>

Find 
$$\mathbf{B}_h, \mathbf{E}_h, \mathbf{J}_h \in \mathcal{V}_h$$

$$\begin{split} \left(\frac{\partial \mathbf{B}_{h}}{\partial t} + \mathbb{U}_{2}\mathbf{B}_{h}, \bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} &- \left(\mathbf{B}_{h}, (u\nabla)\bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} + \left(\mathbf{E}_{h}, \nabla \times \bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} + \\ \sum_{i} \langle \mathbf{u} \overline{B}^{i}_{h}, \llbracket \bar{B}^{i}_{h} \rrbracket_{N} \rangle_{\Gamma_{h}^{+} \cup \mathcal{F}_{h}^{\mathcal{I}}} - \langle \widehat{\mathbf{E}}_{h}, \bar{\mathbf{B}}_{h} \rangle_{\mathcal{F}_{h}} = - \langle (\mathbf{u} \cdot \mathbf{n}) \mathbf{G}_{1}, \bar{\mathbf{B}}_{h} \rangle_{\Gamma_{h}^{-}} \\ & \forall \bar{\mathbf{B}}_{h} \in \mathcal{V}_{h} \\ \left(\mathbf{J}_{h}, \bar{\mathbf{E}}_{h}\right)_{\mathcal{T}_{h}} - \left(\mathbf{B}_{h}, \nabla \times \bar{\mathbf{E}}_{h}\right)_{\mathcal{T}_{h}} + \langle \widehat{\mathbf{B}}_{h}, \llbracket \bar{\mathbf{E}}_{h} \rrbracket_{\mathcal{T}} \rangle_{\mathcal{F}_{h}^{\mathcal{I}}} = 0 \\ & \forall \bar{\mathbf{E}}_{h} \in \mathcal{V}_{h} \\ \left(\mathbf{E}_{h} - (\eta - \beta(\nabla \cdot \mathbf{u}))\mathbf{J}_{h} - \alpha(\mathbf{J}_{h} \times \mathbf{B}_{h}) - \beta \frac{\partial \mathbf{J}_{h}}{\partial t}, \bar{\mathbf{J}}_{h}\right)_{\mathcal{T}_{h}} + \left(\mathbf{B}_{h}, (\mathbf{u}\nabla)\bar{\mathbf{J}}_{h}\right)_{\mathcal{T}_{h}} \\ - \beta \sum_{i} \langle \widehat{\mathbf{u}} \mathbf{J}_{h}^{i}, \llbracket \bar{\mathbf{J}}_{h}^{i} \rrbracket_{N} \rangle_{\Gamma_{h}^{+} \cup \mathcal{F}_{h}^{\mathcal{I}}} = - \langle (\mathbf{u} \cdot \mathbf{n})\mathbf{G}_{2}, \bar{\mathbf{J}}_{h} \rangle_{\Gamma_{h}^{-}} \\ & \forall \bar{\mathbf{J}}_{h} \in \mathcal{V}_{h} \end{split}$$

ETH

### **DG Fluxes**

#### Upwind

$$\widehat{\mathbf{uB}_{h}^{i}} = \{\mathbf{uB}_{h}^{i}\} + \mathfrak{c}\llbracket B_{h}^{i}\rrbracket_{N}$$
$$\widehat{\mathbf{uJ}_{h}^{i}} = \{\mathbf{uJ}_{h}^{i}\} + \mathfrak{c}\llbracket J_{h}^{i}\rrbracket_{N}$$

with 
$$\mathfrak{c} = |\mathbf{n}\mathbf{u}|/2$$
.

$$\widehat{\mathbf{B}_{h}} = \{\mathbf{B}_{h}\} + \mathfrak{b}\llbracket\mathbf{B}_{h}\rrbracket_{T}$$

$$\widehat{\mathbf{E}_{h}} = \begin{cases} \{\mathbf{E}_{h}\} - \mathfrak{b}\llbracket\mathbf{E}_{h}\rrbracket_{T} + \mathfrak{a}\llbracket\mathbf{B}_{h}\rrbracket_{T} & \text{internal edges} \\ \{\mathbf{E}_{h}\} + \mathfrak{a}\llbracket\mathbf{B}_{h}\rrbracket_{T} & \text{boundary edges} \end{cases}$$

With this Fluxes  $\Rightarrow$  Energy estimate.

Outline MHD Theoretical Analysis Numerical Scheme Time Integration Discontinous Galerkin Conclusion Tests

#### Knowing $\mathbf{B}_{h}^{n}, \mathbf{E}_{h}^{n}, \mathbf{J}_{h}^{n}$ find $\mathbf{B}_{h}^{n+1}, \mathbf{E}_{h}^{n+1}, \mathbf{J}_{h}^{n+1} \in \mathcal{V}_{h}$

$$\frac{1}{\Delta t} \left( \mathbf{B}_{h}^{n+1} - \mathbf{B}_{h}^{n}, \bar{\mathbf{B}}_{h} \right)_{\mathcal{T}_{h}} + \left( \mathbb{U}_{2} \mathbf{B}_{h}^{n}, \bar{\mathbf{B}}_{h} \right)_{\mathcal{T}_{h}} - \left( \mathbf{B}_{h}^{n}, (u\nabla) \bar{\mathbf{B}}_{h} \right)_{\mathcal{T}_{h}} + \left( \mathbf{E}_{h}^{n+1}, \nabla \times \bar{\mathbf{B}}_{h} \right)_{\mathcal{T}_{h}} + \sum_{i} \langle \widehat{\mathbf{u}(B^{i})^{n}}_{h}, \llbracket \bar{B}^{i}_{h} \rrbracket_{N} \rangle_{\Gamma_{h}^{+} \cup \mathcal{F}_{h}^{\mathcal{I}}} - \langle \widehat{\mathbf{E}_{h}^{n+1}}, \bar{\mathbf{B}}_{h} \rangle_{\mathcal{F}_{h}} \\
= - \langle (\mathbf{u} \cdot \mathbf{n}) \mathbf{G}_{1}(t^{n}), \bar{\mathbf{B}}_{h} \rangle_{\Gamma_{h}^{-}} \\ \forall \bar{\mathbf{E}}_{h} \in \mathcal{V}_{h}$$

$$\begin{split} \left(\mathbf{J}_{h}^{n}, \bar{\mathbf{E}}_{h}\right)_{\mathcal{T}_{h}} &- \left(\mathbf{B}_{h}^{n}, \nabla \times \bar{\mathbf{E}}_{h}\right)_{\mathcal{T}_{h}} + \langle \widehat{\mathbf{B}}_{h}^{n}, \llbracket \bar{\mathbf{E}}_{h}^{n} \rrbracket_{\mathcal{T}} \rangle_{\mathcal{F}_{h}^{\mathcal{I}}} = 0 \\ &\quad \forall \bar{\mathbf{B}}_{h} \in \mathcal{V}_{h} \\ \left(\mathbf{E}^{n+1}{}_{h} - \eta \mathbf{J}_{h}^{n+1} + \beta (\nabla \cdot \mathbf{u})) \mathbf{J}_{h}^{n} - \alpha (\mathbf{J}_{h}^{n+1} \times \mathbf{B}_{h}^{n}), \bar{\mathbf{J}}_{h} \right)_{\mathcal{T}_{h}} \\ &- \frac{\beta}{\Delta t} \left(\mathbf{J}_{h}^{n+1} - \mathbf{J}_{h}^{n}, \bar{\mathbf{J}}_{h} \right)_{\mathcal{T}_{h}} + \left(\mathbf{B}_{h}^{n}, (\mathbf{u} \nabla) \bar{\mathbf{J}}_{h} \right)_{\mathcal{T}_{h}} - \beta \sum_{i} \langle \widehat{\mathbf{u}}(\widehat{J'})_{h}^{n}, \llbracket \bar{\mathbf{J}}_{h}^{i} \rrbracket_{N} \rangle_{\Gamma_{h}^{+} \cup \mathcal{F}_{h}^{\mathcal{I}}} \\ &= - \langle (\mathbf{u} \cdot \mathbf{n}) \mathbf{G}_{2}(t^{n}), \bar{\mathbf{J}}_{h} \rangle_{\Gamma_{h}^{-}} \qquad \forall \bar{\mathbf{J}}_{h} \in \mathcal{V}_{h} \end{split}$$

ETH

#### Matrix formulation

$$\underbrace{(\gamma_1^n \mathbb{M} + \gamma_2^n \mathbb{A}_{DG})}_{\mathbb{C}_{DG}^n} \hat{\mathbf{B}}^{n+1} = \mathbf{R}^n$$

### **1D Model**

$$\partial_t b + v \partial_x b - \eta \partial_{xx} b - \beta (\partial_{xxt} b + \partial_x (u \partial_{xx} b)) = 0$$

Auxiliary variables

$$\partial_t b + u \partial_x b - \partial_x e = 0$$
  
 $j = \partial_x b$   
 $e = \eta j + \beta (\partial_t j + u \partial_x j)$ 

### Preconditioner



# Conclusion

- The solution of the induction equation with Hall term is in  $H^1(\Omega)$ .
- We can build symmetric and divergence preserving methods.
- The spatially discretized systems possess similar estimates as continuous one.
- ➡ stability granted for exact-time evolution of the discrete system.
- Preconditioner for time evolution.
- DG Formulation.

# Conclusion

- The solution of the induction equation with Hall term is in  $H^1(\Omega)$ .
- We can build symmetric and divergence preserving methods.
- The spatially discretized systems possess similar estimates as continuous one.
- ➡ stability granted for exact-time evolution of the discrete system.
- Preconditioner for time evolution.
- DG Formulation.

# Thank You!