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Time integration

DG Formulation
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Magnetic Reconnection

Change in topology of the magnetic field

U in

U in

U outU out

Figure: Schematic of a reconnection.

Magnetic energy⇒ kinetic and thermal energy

Dissipation
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MHD Equations
The equations

∂ρ

∂t
= −∇ · (ρu)

∂(ρu)
∂t

= −∇

{
ρuu⊤ +

(
p +

B2

2

)
I3×3 − BB⊤

}

∂E

∂t
= −∇

{(
E + p −

B2

2

)
u + E× B

}

∂B
∂t

= −∇× E

are coupled through the equation of state

E =
p

γ − 1
+

ρu2

2
+

B2

2

To complete the formulation of the problem we need to state some
equation for E
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Ideal MHD

Standard model for E :
Ohm’s Law

E = −u× B

Problem:
no dissipation⇒ “frozen” condition.
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Ideal MHD

Standard model for E :
Ohm’s Law

E = −u× B

Problem:
no dissipation⇒ “frozen” condition.
We need to add dissipation
Resistive MHD:

E = −u× B− ηJ

not sufficient for fast reconnection.
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Ideal MHD

Standard model for E :
Ohm’s Law

E = −u× B

Problem:
no dissipation⇒ “frozen” condition.
We need to add dissipation
Resistive MHD:

E = −u× B− ηJ

not sufficient for fast reconnection.

We need another model...
Numerical simulation and laboratory experiment⇒ Hall Effect
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Generalized Ohm’s Law

E = −u× B + ηJ +
δi

L0

J× B
ρ
−

δi

L0

∇
↔

p
ρ

+

(
δe

L0

)2 1
ρ

[
∂J
∂t

+ (u · ∇)J
]
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Generalized Ohm’s Law

E = −u× B + ηJ +
δi

L0

J× B
ρ
−

δi

L0

∇
↔

p
ρ

+

(
δe

L0

)2 1
ρ

[
∂J
∂t

+ (u · ∇)J
]

Resistivity

Hall effect

Electron pressure

Electron inertia
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Generalized Ohm’s Law

E = −u× B + ηJ +
δi

L0

J× B
ρ
−

δi

L0

∇
↔

p
ρ

+

(
δe

L0

)2 1
ρ

[
∂J
∂t

+ (u · ∇)J
]

Resistivity

Hall effect

Electron pressure

Electron inertia

J is the electric current given by Ampère’s law

J = ∇× B

X.Qian, J.Bablás, A. Bhattacharjee, H.Yang (2009)
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General Induction Equation
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General Induction Equation
Faraday’s law

∂B
∂t

= −∇× E

Generalized Ohm law
Ampère’s law
↔

p isotropic.

P. Corti 17-19th August 2011, Pro*Doc Retreat, Disentis Abbey p. 7



Outline MHD Theoretical Analysis Numerical Scheme Time Integration Discontinous Galerkin Conclusion Tests

General Induction Equation
Faraday’s law

∂B
∂t

= −∇× E

Generalized Ohm law
Ampère’s law
↔

p isotropic.
Are combined to obtain

∂

∂t

[
B +

(
δe

L0

)2 1
ρ
∇× (∇× B)

]
= ∇× (u× B)− η∇× (∇× B)

−

(
δe

L0

)2 1
ρ
∇× ((u · ∇)(∇× B))−

δi

L0

1
ρ
∇× ((∇× B)× B)
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General Induction Equation
Faraday’s law

∂B
∂t

= −∇× E

Generalized Ohm law
Ampère’s law
↔

p isotropic.
Are combined to obtain

∂

∂t

[
B +

(
δe

L0

)2 1
ρ
∇× (∇× B)

]
= ∇× (u× B)− η∇× (∇× B)

−

(
δe

L0

)2 1
ρ
∇× ((u · ∇)(∇× B))−

δi

L0

1
ρ
∇× ((∇× B)× B)

This equation preserve the divergence of the magnetic field

d
dt

(∇ · B) = 0
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Symmetrized Equation

Using the identity

∇× (u× B) = (B · ∇)u− B(∇ · u) + u(∇ · B)− (u · ∇)B
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Symmetrized Equation

Using the identity

∇× (u× B) = (B · ∇)u− B(∇ · u) + u(∇ · B)− (u · ∇)B

Since the magnetic field is solenoidal ∇ · B = 0 we subtract u(∇ · B)
to the right side of the equation

∂

∂t

[
B +

(
δe

L0

)2

∇× (∇× B)

]
=

(B · ∇)u− B(∇ · u)− (u · ∇)B− η∇× (∇× B)

−

(
δe

L0

)2 1
ρ
∇× ((u · ∇)(∇× B))−

δi

L0

1
ρ
∇× ((∇× B)× B) (1)
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Boundary Condition

Ω ⊂ R3 is a smooth domain
∂Ωin = {x ∈ ∂Ω|n · u < 0} is the inflow boundary.

Natural BC

B× n = 0 on ∂Ω\∂Ωin (2)

Inflow BC

B = 0 on ∂Ωin

J = 0 on ∂Ωin (3)

P. Corti 17-19th August 2011, Pro*Doc Retreat, Disentis Abbey p. 9



Outline MHD Theoretical Analysis Numerical Scheme Time Integration Discontinous Galerkin Conclusion Tests

Estimates

Theorem
For u ∈ C2(Ω) and B solution of (??) satisfying (??) and (??), then
this estimate holds

d
dt

(
‖B‖2

L2(Ω) +

(
δe

L0

)2 1
ρ
‖∇ × B‖2

L2(Ω)

)

≤ C1

(
‖B‖2

L2(Ω) +

(
δe

L0

)2 1
ρ
‖∇× B‖2

L2(Ω)

)
(4)

with C1 a constant that depend on u and its derivative only.
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Additional Boundary condition

∇ · B = 0 on ∂Ωin (5)

Theorem
For u ∈ C2(Ω) and B solution of (??) satisfying (??),then this
estimate holds

d
dt
‖∇ · B‖L2(Ω) ≤ C2‖∇ · B‖L2(Ω) (6)

with C2 a constant that depend on u and its derivative only.

Remark
If the solution satisfy all the three boundary conditions, then
B ∈ H1(Ω)
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Numerical Formulation

Semi-discrete formulation

d
dt

(
B̂(t) + D× D× B̂(t)

)
= R(B̂(t), û)

where B̂ and û are grid functions.

Discretize the space with D×.
Resulting system of ODE satisfies similar estimates as the one
we have for the continuous case.
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Numerical Formulation

Semi-discrete formulation

d
dt

(
B̂(t) + D× D× B̂(t)

)
= R(B̂(t), û)

where B̂ and û are grid functions.

Discretize the space with D×.
Resulting system of ODE satisfies similar estimates as the one
we have for the continuous case.

Integrate on time with Runge Kutta Method
We have to compute a matrix inversion!
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Discrete Operator

One dimensional Dx with summation by parts

Dx = P−1
x Q Q⊤ + Q = diag(−1, 0, · · · , 0, 1)

Px diagonal positive definite matrix.
⇒ (Dx v̂ , ŵ)Px = −(v̂ ,Dxŵ)Px + vNwN − v0w0.

Multidimensional operators

dx = Dx ⊗ Iy ⊗ Iz
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Summation by Parts

Writing the differential operator as

D =




dx

dy

dz




Lemma

(v̂ ,Dŵ)P = −(Dv̂ , ŵ)P + B.T

(v̂,D× ŵ)P = (D× v̂, ŵ)P + B.T

(v̂, (û · D)v̂))P ≤ C‖v̂‖P + B.T
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Numerical Scheme

∂

∂t

[
B̂ +

(
δe

L0

)2

D× (D× B̂)

]
= ADV(û, B̂)− ηD× (D× B̂)

−

(
δe

L0

)2 1
ρ

D× ((v̂ · D)B̂)−
δi

L0

1
ρ

D×
(
(D× B̂)× B̂

)
(7)

B̂ decays to zero st infinity⇒ neglect boundary terms. Assuming that
ADV satisfy

Lemma

(B̂,ADV(û, B̂))P ≤ C‖B̂‖2
P (8)
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Theorem
Solution of (??) with condition (??), satisfy

d
dt

(
‖B̂‖2

P +

(
δe

L0

)2 1
ρ
‖D× B̂‖2

P

)

≤ C1

(
‖B̂‖2

P +

(
δe

L0

)2 1
ρ
‖D× B̂‖2

P

)

can be shown using the same technique used in the continuous case.
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Approximated Chain Rule

Lemma (Mishra, Svärd)

Let ū be a restriction of u ∈ C2(Ω), then there is a special average
operator Āx , such that

Dx (ūw) = ūDx(w) + ūx Āx (w) + w̃

where ‖w̃‖Px ≤ C∆x‖w‖Px

Average operators
Āx = Āx ⊗ Iy ⊗ Iz
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Symmetric Advection

ADV(û, B̂) = (Ā(B̂) · D)û− Āx (B̂)dx û1 − Āy (B̂)dy û2

− Āz(B̂)dz û3 − (û · D)B̂ (9)

where Ā(B̂) = (Āx (B̂1), Āy (B̂2), Āz(B̂3))⊤

⇒ (??) is valid

Theorem (Mishra, Svärd)

For numerical scheme with ADV defined as (??) we have

d
dt
‖D · B̂‖P ≤ C

(
‖D · B̂‖P + ‖B̂‖P

)
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Divergence Preserving

ADV(û, B̂) = D× (û× B̂) (10)

The operator dx , dy and dz commute
⇒ D · (D× ŵ) = 0

Lemma
Scheme (??) with (??) satisfy

d
dt

D · B̂ = 0

Can we obtain (??) for (??)?
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Divergence Preserving

ADV(û, B̂) = D× (û× B̂) (10)

The operator dx , dy and dz commute
⇒ D · (D× ŵ) = 0

Lemma
Scheme (??) with (??) satisfy

d
dt

D · B̂ = 0

Can we obtain (??) for (??)?
If D · B̂0 = 0 yes, symmetrizing the problem.
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Time Integration

Semi-discrete formulation

d
dt

[(I+ A)B̂(t)] = R(B̂(t), û(t))

Large dimension

dim(B̂) = dim(R) = 3× Nx × Ny × Nz

A matrix: discrete curl curl operator

Time evolution has to invert this matrix, e.g. Euler method

B̂n+1 = B̂n +∆t(I + A)−1R(B̂(t), û(t))
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Fast Approximated Solution: Auxilary Space
joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:
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Known problem for edge element formulation:

Main idea:

Restriction cell centered⇒ edge element
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Fast Approximated Solution: Auxilary Space
joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

Restriction cell centered⇒ edge element

Multigrid solution
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Fast Approximated Solution: Auxilary Space
joint work with Ralf Hiptmair

Known problem for edge element formulation:
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Prolong back edge element⇒ cell centered
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Fast Approximated Solution: Auxilary Space
joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

Restriction cell centered⇒ edge element

Multigrid solution

Prolong back edge element⇒ cell centered

Prolongation P should satisfy

P(ker(AFE)) ⊂ ker(AFD)
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Fast Approximated Solution: Auxilary Space
joint work with Ralf Hiptmair

Known problem for edge element formulation:

Main idea:

Restriction cell centered⇒ edge element

Multigrid solution

Prolong back edge element⇒ cell centered

Prolongation P should satisfy

P(ker(AFE)) ⊂ ker(AFD)

Problem:

AFE has a “local” kernel,

AFD for dx = Dx ⊗ Iy has a “global” kernel!
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Solution:
Averages!
For

dx = Dx ⊗ Ay

with a D a second order central difference and

Awi =
wi+1 + 2wi + wi−1

4

in this case we have a compact kernel

Figure: Local Star Shaped Kernel of AFD in 2D.
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Prolongation operator in 2D:

P⊤ : FD space→ FE conform space

1/2

1/2

1/2

1/2
P

T

Figure: Schematic for P⊤.

We have
P(ker(AFE)) ⊂ ker(AFD)
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Prolongation operator in 2D:

P⊤ : FD space→ FE conform space

1/2

1/2

1/2

1/2
P

T

Figure: Schematic for P⊤.

We have
P(ker(AFE)) ⊂ ker(AFD)

New Problem: dim(ker(AFD)) ≥ dim(ker(AFE))
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Additonal modes prevent fast convergence.
⇒ Cleaning

0 5 10 15 20 25
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Comparison between scheme with and without correction

 

 
N=64
N=64 with correction
N=128
N=128 with correction
N=256
N=256 with correction

Figure: Algorithm with and without cancellation of bad modes.
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Still not effective...
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Still not effective...
Soultion:

Same framework (FD): new D̂ and P̂.

OR

New formulation DG⇒ more suitable space.
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System of equations

∂B
∂t

+ U1B + (u∇)B = −∇× Ẽ

J = ∇× B

Ẽ = ηJ + αJ× B + β(
∂J
∂t

+ (u∇)J)

U1 depends on ∂ui
∂xj

, α = δi
L0ρ

and β =
δ2

e

L2
0ρ
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Define

(v ,w)
Th

=
∑

K∈Th

∫

K
v(x)w(x)dx

〈v ,w〉Faces =
∑

f∈Faces

∫

e
v(x)w(x)ds

where Th a triangulation of Ω.
Faces can be

Fh set of faces in Th.

FI
h set of inner faces in Th.

Γh set of boundary faces in Th.

Γ+h set of outflow boundary faces in Th.

Γ−h set of inflow faces boundary in Th.
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To have unique valued on faces we define:

averages {.}

normal jumps [[.]]N

tangential jumps [[.]]T

P. Corti 17-19th August 2011, Pro*Doc Retreat, Disentis Abbey p. 28
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Find Bh,Eh, Jh ∈ Vh

(
∂Bh

∂t
+ U2Bh, B̄h

)

Th

−
(
Bh, (u∇)B̄h

)
Th

+
(
Eh,∇× B̄h

)
Th

+

∑

i

〈ûBi
h, [[B̄i

h]]N〉Γ+
h ∪FI

h
− 〈Êh, B̄h〉Fh

= −〈(u · n)G1, B̄h〉Γ−

h

∀ B̄h ∈ Vh
(
Jh, Ēh

)
Th
−
(
Bh,∇× Ēh

)
Th

+ 〈B̂h, [[Ēh]]T 〉FI

h
= 0

∀ Ēh ∈ Vh(
Eh − (η − β(∇ · u))Jh − α(Jh × Bh)− β

∂Jh

∂t
, J̄h

)

Th

+
(
Bh, (u∇)J̄h

)
Th

− β
∑

i

〈ûJ i
h, [[J̄

i
h]]N〉Γ+

h ∪FI

h
= −〈(u · n)G2, J̄h〉Γ−

h

∀ J̄h ∈ Vh
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DG Fluxes

Upwind

ûBi
h = {uBi

h}+ c[[Bi
h]]N

ûJ i
h = {uJ i

h}+ c[[J i
h]]N

with c = |nu|/2.

LDG

B̂h = {Bh}+ b[[Bh]]T

Êh =

{
{Eh} − b[[Eh]]T + a[[Bh]]T internal edges
{Eh}+ a[[Bh]]T boundary edges

With this Fluxes⇒ Energy estimate.
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Knowing Bn
h,E

n
h, J

n
h find Bn+1

h ,En+1
h , Jn+1

h ∈ Vh

1
∆t

(
Bn+1

h − Bn
h, B̄h

)
Th

+
(
U2Bn

h, B̄h
)
Th
−
(
Bn

h, (u∇)B̄h
)
Th
+

(
En+1

h ,∇× B̄h

)
Th

+
∑

i

〈û(Bi)n
h, [[B̄

i
h]]N〉Γ+

h ∪FI

h
− 〈̂En+1

h , B̄h〉Fh

= −〈(u · n)G1(t
n), B̄h〉Γ−

h

∀ Ēh ∈ Vh
(
Jn

h, Ēh
)
Th
−
(
Bn

h,∇× Ēh
)
Th

+ 〈B̂n
h, [[Ē

n
h]]T 〉FI

h
= 0

∀ B̄h ∈ Vh(
En+1

h − ηJn+1
h + β(∇ · u))Jn

h − α(Jn+1
h × Bn

h), J̄h

)
Th

−
β

∆t

(
Jn+1

h − Jn
h, J̄h

)
Th

+
(
Bn

h, (u∇)J̄h
)
Th
− β

∑

i

〈û(J i)n
h, [[J̄

i
h]]N〉Γ+

h ∪FI

h

= −〈(u · n)G2(tn), J̄h〉Γ−

h
∀ J̄h ∈ Vh
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Matrix formulation

(γn
1M+ γn

2ADG)︸ ︷︷ ︸
Cn

DG

B̂n+1 = Rn

Algorithm
Bn+1 ← Bn

for i ≤ Niter do
r← Rn − Cn

DGBn+1

c← Ln
DGc = r

Bn+1 ← Bn+1 + c
r← Rn − Cn

DGBn+1

ρ← P⊤r
γ ← Cn

FEγ = ρ
c← Pγ
Bn+1 ← Bn+1 + ĉ
i ← i + 1

end for
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1D Model

∂tb + v∂xb − η∂xx b − β(∂xxt b + ∂x (u∂xx b)) = 0

Auxiliary variables

∂t b + u∂x b − ∂xe = 0

j = ∂x b

e = ηj + β(∂t j + u∂x j)
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Preconditioner
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Conclusion

The solution of the induction equation with Hall term is in H1(Ω).

We can build symmetric and divergence preserving methods.

The spatially discretized systems possess similar estimates as
continuous one.

⇒ stability granted for exact-time evolution of the discrete
system.

Preconditioner for time evolution.

DG Formulation.
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Conclusion

The solution of the induction equation with Hall term is in H1(Ω).

We can build symmetric and divergence preserving methods.

The spatially discretized systems possess similar estimates as
continuous one.

⇒ stability granted for exact-time evolution of the discrete
system.

Preconditioner for time evolution.

DG Formulation.

Thank You!
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