Approximation by waves

Andrea Moiola, Ralf Hiptmair
Seminar for Applied Mathematics - ETH Zürich
\section*{llaria Perugia}
Dipartimento di Matematica - Università di Pavia

Disentis - August 18-21, 2010

Model problem

Homogeneous Helmholtz equation with impedance boundary conditions:

$$
\left\{\begin{array}{rlrl}
-\Delta u-\omega^{2} u & =0 & & \text { in } \Omega, \\
\nabla u \cdot \mathbf{n}+i \omega u=g & & \text { on } \partial \Omega
\end{array}\right.
$$

$\Omega \subset \mathbb{R}^{N}, N=2,3$, bounded polyhedral domain, $g \in L^{2}(\partial \Omega)$, wavenumber $\omega>0$.

With large ω, standard finite elements are affected by the numerical dispersion and the pollution effect:

special FEM are required.

Trefftz methods for Helmholtz

The Trefftz methods use basis functions that are solutions of the PDE under examination in each element.

Trefftz methods for Helmholtz

The Trefftz methods use basis functions that are solutions of the PDE under examination in each element.

Homogeneous Helmholtz equation: $\quad-\Delta u-\omega^{2} u=0$

- plane wave basis functions (UWVF, PWDG, DEM, VTCR,. . .)

$$
x \mapsto e^{i \omega d \cdot x}, \quad|d|=1 ;
$$

- circular / spherical / corner wave basis functions (least-squares Trefftz,... .);
- singular / fundamental basis functions (MFS,... .);
- ...

The best approximation estimate

The analysis of plane waves Trefftz methods requires best approximation estimates:

$$
-\Delta u-\omega^{2} u=0 \quad \text { in } D, \quad \operatorname{diam} D=h, \quad p \in \mathbb{N}
$$

$$
\inf _{\alpha \in \mathbb{C}^{p}}\left\|u-\sum_{k=1}^{p} \alpha_{k} e^{i \omega d_{k} \cdot x}\right\|_{H^{j}(D)} \leq C \epsilon(h, p)\|u\|_{H^{K+1}(D)}
$$

with $\quad \epsilon(h, p) \xrightarrow[p \rightarrow \infty]{h \rightarrow 0} 0$.

The plan

Only few results are available (Cessenat And Després 1998, Melenk 1995), improvement and generalization are needed.

Our goals:

- estimates for plane and circular/spherical waves;
- estimates both in h and p;
- estimates in 2 and 3 dimensions;
- explicit dependence of the bounds on ω.

Outline

- Vekua theory;
- approximation by generalized harmonic polynomials;
- approximation by plane waves;
- approximation for Maxwell equations (only some ideas!).

Part 1

Vekua theory

The Vekua theory in N dimensions

$D \subset \mathbb{R}^{N}, N \geq 2$, star-shaped.

Given $\omega>0$, define two continuous functions:

$$
\begin{gathered}
M_{1}, M_{2}: D \times[0,1] \rightarrow \mathbb{R} \\
M_{1}(x, t)=-\frac{\omega|x|}{2} \frac{\sqrt{t}^{N-2}}{\sqrt{1-t}} J_{1}(\omega|x| \sqrt{1-t}), \\
M_{2}(x, t)=-\frac{i \omega|x|}{2} \frac{\sqrt{t}^{N-3}}{\sqrt{1-t}} J_{1}(i \omega|x| \sqrt{t(1-t)}) .
\end{gathered}
$$

J_{1} is the ordinary Bessel function of the first kind and order 1.

The Vekua operators

$$
\begin{gathered}
V_{1}, V_{2}: C(D) \rightarrow C(D), \\
V_{j}[\phi](x):=\phi(x)+\int_{0}^{1} M_{j}(x, t) \phi(t x) \mathrm{d} t, \quad \text { a.e. } x \in D, j=1,2 .
\end{gathered}
$$

The Vekua operators

$$
\begin{gathered}
V_{1}, V_{2}: C(D) \rightarrow C(D), \\
V_{j}[\phi](x):=\phi(x)+\int_{0}^{1} M_{j}(x, t) \phi(t x) \mathrm{d} t, \quad \text { a.e. } x \in D, j=1,2 .
\end{gathered}
$$

Short Vekua's story:

- Vekua 1942, Helmholtz equation in N dimensions, no proofs;
- Vekua 1948 (translated in 1967), elliptic equations in 2 dimensions, one page for N-dimensional Helmholtz;
- Henrici 1957, elliptic equations only in 2 dimensions.
$\rightarrow N$-dimensional version almost forgotten.

The properties of Vekua operators

$$
V_{2}=\left(V_{1}\right)^{-1}
$$

The properties of Vekua operators

$$
V_{2}=\left(V_{1}\right)^{-1}
$$

$$
\left(-\Delta-\omega^{2}\right) u=0
$$

$$
\Longleftrightarrow
$$

$$
\begin{equation*}
\Delta V_{2}[u]=0 \tag{2}
\end{equation*}
$$

Main idea of Vekua theory:
Helmholtz solutions $\underset{V_{2}}{\stackrel{V_{1}}{\leftrightarrows}}$ Harmonic functions

The continuity of Vekua operators

Weighted Sobolev norms:

$$
\|u\|_{j, \omega, D}:=\left(\sum_{k=0}^{j} \omega^{2(j-k)}|u|_{k, D}^{2}\right)^{\frac{1}{2}}, \quad \omega>0, j \in \mathbb{N}
$$

$\Delta \phi=0, \quad\left(-\Delta-\omega^{2}\right) u=0:$

$$
\begin{array}{ll}
\left\|V_{1}[\phi]\right\|_{j, \omega, D} \leq C_{1}(N, j, \rho)\left(1+(\omega h)^{2}\right)\|\phi\|_{j, \omega, D} & j \geq 0 \\
\left\|V_{2}[u]\right\|_{j, \omega, D} \leq C_{2}(N, j, \rho)\left(1+(\omega h)^{4}\right) e^{\frac{3}{4} \omega h}\|u\|_{j, \omega, D} & j \geq 1
\end{array}
$$

$$
N=2,3, \quad u, \phi \in H^{j}(D)
$$

The interior estimates

Key ingredients for the proof of the continuity of V_{1} and V_{2} are the interior estimates.

- For harmonic functions, these are well-known:

$$
\Delta \phi=0 \Rightarrow|\phi(x)|^{2} \leq \frac{1}{R^{N}\left|B_{1}\right|}\|\phi\|_{0, B_{(x, R)}}^{2}
$$

- For Helmholtz solutions, $N=2,3$, we can prove estimates that are explicit in ω :

$$
\begin{gathered}
-\Delta u-\omega^{2} u=0 \\
\Downarrow \\
|u(x)| \leq C R^{-\frac{N}{2}}\left(1+\omega^{2} R^{2}\right)\left(\|u\|_{0, B_{(x, R)}}+R\|\nabla u\|_{0, B_{(x, R)}}\right), \\
|\nabla u(x)| \leq C R^{-\frac{N}{2}}\left(\omega^{2} R\|u\|_{0, B_{(x, R)}}+\left(1+\omega^{2} R^{2}\right)\|\nabla u\|_{0, B_{(x, R)}}\right) .
\end{gathered}
$$

Part II

Approximation by GHPs

The approximation by GHPs

$$
-\Delta u-\omega^{2} u=0, \quad u \in H^{k+1}(D)
$$

The approximation by GHPs

$$
\begin{gathered}
-\Delta u-\omega^{2} u=0, \quad u \in H^{k+1}(D), \\
\downarrow V_{2}
\end{gathered}
$$

$V_{2}[u]$ is harmonic \Longrightarrow can be approximated by harmonic polynomials
(Bramble-Hilbert, complex analysis techniques, ...),

The approximation by GHPs

$$
\begin{aligned}
-\Delta u-\omega^{2} u=0, & u \in H^{k+1}(D) \\
& \downarrow V_{2}
\end{aligned}
$$

$V_{2}[u]$ is harmonic \Longrightarrow can be approximated by harmonic polynomials
(Bramble-Hilbert, complex analysis techniques, ...),

$$
\downarrow V_{1}
$$

u can be approximated by

$$
V_{1}\left[\begin{array}{c}
\text { harmonic } \\
\text { polynomials }
\end{array}\right]=\begin{gathered}
\text { generalized } \\
\text { parmonic } \\
\text { polynomials }
\end{gathered} \quad \text { (GHPs). }
$$

Generalized harmonic polynomials

In 2D, the GHPs are circular waves:

$$
Q(x)=e^{i l \psi} J_{l}(\omega r), \quad \text { in polar coordinates } x=r e^{i \psi}, l \in \mathbb{Z}
$$

$J_{l}=$ Bessel functions.

In 3D, the GHPs are spherical waves:

$$
Q(x)=Y_{l, m}\left(\frac{x}{|x|}\right) j_{l}(\omega|x|), \quad 0 \leq|m| \leq l \in \mathbb{N},
$$

$Y_{l, m}=$ spherical harmonics,
$j_{l}=$ spherical Bessel functions.

Both belong to the family of the Herglotz functions.
The GHPs are also called Fourier-Bessel functions.

Generalized harmonic polynomials

Real part of GHPs in $[-1,1]^{2}: V_{1}\left[z^{l}\right], l=0,2,4, \omega=10$

The approximation by GHPs: h-convergence

$$
\begin{aligned}
& P \in\left\{\begin{array}{c}
\inf _{\text {harmonic }}^{\text {polynomials }} \\
\text { of degree } \leq L
\end{array}\right\} \quad\left\|u-V_{1}[P]\right\|_{j, \omega, D} \leq C \inf _{P}\left\|V_{2}[u]-P\right\|_{j, \omega, D} \quad \text { contin. of } V_{1}, \\
& \leq C h^{k+1-j} \epsilon(L)\left\|V_{2}[u]\right\|_{k+1, \omega, D} \\
& \leq C h^{k+1-j} \epsilon(L)\|u\|_{k+1, \omega, D}
\end{aligned}
$$

For the h-convergence it is enough to use Bramble-Hilbert theorem: it provides a harmonic polynomial!

The constant C depends on ωh, not on ω alone:

$$
C=C \cdot(1+\omega h)^{j+6} e^{\frac{3}{4} \omega h} .
$$

Harmonic approximation: p-convergence, 2D

In 2 dimensions, if D satisfies the 'exterior cone condition', then:

$$
\epsilon(L)=\left(\frac{\log (L+2)}{L+2}\right)^{\lambda(k+1-j)}
$$

If D is convex, $\lambda=1$. Otherwise $\lambda=\min \frac{\text { re-entrant corner of } D}{\pi}$. Sharp p-estimate! (Melenk)

In 2D we can use complex analysis:

- conformal mappings $B_{1} \leftrightarrow D$;
- ϕ harmonic and real $\rightarrow \phi=\operatorname{Re}(\Phi$ holomorphic);
- complex interpolation on B_{1};
- every (complex) polynomial is harmonic;
- ...

Harmonic approximation: p-convergence, N-D

An analogous result holds in N dimensions:

$$
\epsilon(L)=L^{-\lambda(k+1-j)},
$$

where $\lambda>0$ is a geometric unknown parameter.
Follows from:

- an exponential approximation result for compact subsets by (BAGBy, Bos and Levenberg 1996) in L^{∞}-norm;
- harmonic dilation and deformation technique.

If u is the restriction of a solution in a larger domain (2 or 3D), the convergence in L is exponential.

The approximation by GHPs: $h \& p$-convergence

Harmonic polynomial approximation:

2-3D	h-conv.	harmonic Bramble-Hilbert: easy
2D	p-conv.	sharp estimate by Melenk: complex analysis
3D	p-conv.	new estimates, order of convergence not explicit

\downarrow Vekua continuity

$$
\begin{aligned}
& \text { If }-\Delta u-\omega^{2} u=0, \quad N=2,3, \quad 0 \leq j \leq k \leq L \\
& \underset{\substack{\inf \\
\inf _{\text {of degree }} \leq L}}{ }\|u-Q\|_{j, \omega, D} \leq C(\omega h) h^{k+1-j} L^{-\lambda(k+1-j)}\|u\|_{k+1, \omega, D},
\end{aligned}
$$

The rate $\lambda>0$ depends only on the shape of D.
If it is convex and 2 D , then $\lambda=1-\varepsilon$.

Best approx. estimate for spherical waves Trefftz methods!

Part III

Approximation by plane waves

The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves: Jacobi-Anger expansion

$$
\begin{align*}
e^{i z \cos \theta} & =\sum_{l \in \mathbb{Z}} i^{l} J_{l}(z) e^{i l \theta}, & z \in \mathbb{C}, \theta \in \mathbb{R}, \\
\underbrace{e^{i r \xi \cdot \eta}}_{\text {plane wave }} & =4 \pi \sum_{l \geq 0} \sum_{m=-l}^{l} i^{l} \underbrace{j_{l}(r) Y_{l, m}(\xi)}_{G H P} \overline{Y_{l, m}(\eta)}, & \xi, \eta \in S^{2}, r \geq 0 .
\end{align*}
$$

We need the other way round:
GHP = linear combination of plane waves
\rightarrow truncation of J-A expansion,
\rightarrow solution of a linear system,
\rightarrow residual estimates.

The approximation of GHPs by plane waves: 2D

$$
\begin{aligned}
\mathrm{GHP} & -\sum_{k=-q}^{q} \alpha_{k} e^{i \omega x \cdot d_{k}} \quad \quad\left(x=|x| e^{i \psi}, d_{k}=\left(\cos \theta_{k}, \sin \theta_{k}\right)\right) \\
& =\underbrace{\sum_{l=-L}^{L} a_{l} J_{l}(\omega|x|) e^{i l \psi}}_{V[P], \text { degree } L}-\underbrace{\sum_{l \in \mathbb{Z}} J_{l}(\omega|x|) e^{i l \psi} i^{l} \sum_{k=-q}^{q} \alpha_{k} e^{-i l \theta_{k}}}_{\text {Jacobi-Anger }} \\
& =-\sum_{|l|>q} i^{l} J_{l}(\omega|x|) e^{i l \psi} \sum_{k=-q}^{q} \alpha_{k} e^{-i l \theta_{k}}
\end{aligned}
$$

where the vector α_{k} is solution of \mathbf{a} Vandermonde linear system:

$$
\left\{e^{-i l \theta_{k}}\right\}_{l, k} \cdot \alpha_{k}=i^{-l} a_{l}
$$

- bound on the inverse matrix;
- control on the minimal angular distance between plane waves directions (non equispaced case).

The approximation of GHPs by plane waves: 2D

Given a harmonic polynomial P of degree at most $L(\geq K)$, there exists $\alpha \in \mathbb{C}^{2 q+1}$ such that

$$
\left\|V_{1}[P]-\sum_{k=1}^{2 q+1} \alpha_{k} e^{i \omega x \cdot d_{k}}\right\|_{L^{\infty}\left(B_{2 h}\right)} \leq C_{(\rho, L, \omega h)} h^{K-1}\left(\frac{c_{0}(\omega h)^{2}}{q+1}\right)^{\frac{q+1}{2}}\|P\|_{K, \omega, D} .
$$

The convergence is faster than exponential in q.
The constants C and c_{0} can be made completely explicit.
$\left.\begin{array}{l}\text { Cauchy estimates } \\ \text { Vekua continuity }\end{array}\right\} \rightarrow$ bound in Sobolev norms.

The choice of the directions in 3D

3D Jacobi-Anger gives the matrix $\quad\{M\}_{l, m ; k}=Y_{l, m}\left(d_{k}\right)$ that depends on the choice of the directions.

Problem: an upper bound on $\left\|M^{-1}\right\|$ is needed but M is not even always invertible!

The choice of the directions in 3D

3D Jacobi-Anger gives the matrix $\quad\{M\}_{l, m ; k}=Y_{l, m}\left(d_{k}\right)$ that depends on the choice of the directions.

Problem: an upper bound on $\left\|M^{-1}\right\|$ is needed but M is not even always invertible!

Solution:

- there exists an optimal choice s.t. $\left\|M^{-1}\right\|_{1} \leq 2 \sqrt{\pi} p$;
- it corresponds to the extremal systems of Sloan and Womersley for quadrature on S^{2};
- some simple choices of points give good result, heuristic: d_{k} have to be as "equispaced" as possible.

With this choice \rightarrow analogous results as in 2D.

The final approximation by plane waves

Plane waves

Vekua theory: algebraic in h and p,
Jacobi-Anger: algebraic in h, $>$ exponential in p.

Final estimate

$$
\inf _{\alpha \in \mathbb{C}^{p}}\left\|u-\sum_{k=1}^{p} \alpha_{k} e^{i \omega x \cdot d_{k}}\right\|_{j, \omega, D} \leq C h^{K+1-j} q^{-\lambda(K+1-j)}\|u\|_{K+1, \omega, D}
$$

In 2D: $\quad p=2 q+1, \quad \lambda(D) \quad$ explicit, $\quad \forall d_{k}$.
In 3D: $\quad p=(q+1)^{2}, \quad \lambda(D)$ unknown, special d_{k}.

Approximation for Helmholtz eq.: conclusions

What we have proved:

- hp-estimates for circular/spherical and plane waves in 2D and 3D,
- all the constants are explicit in ωh,
- all the orders in h are sharp.

Open problems / work in progress:
explicit order of convergence in p in 3D convex domains, \bullet
Vekua theory and approximation for Maxwell equation.

Part IV

Approximation for Maxwell equations

Maxwell equation

The vector field \mathbf{u} is solution of Maxwell equations

$$
\text { curl curl } \mathbf{u}-\omega^{2} \mathbf{u}=0
$$

if and only if

$$
\left\{\begin{array}{l}
-\Delta \mathbf{u}_{j}-\omega^{2} \mathbf{u}_{j}=0, \quad j=1,2,3 \\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Maxwell equation

The vector field \mathbf{u} is solution of Maxwell equations

$$
\text { curl curl } \mathbf{u}-\omega^{2} \mathbf{u}=0
$$

if and only if

$$
\left\{\begin{array}{l}
-\Delta \mathbf{u}_{j}-\omega^{2} \mathbf{u}_{j}=0, \quad j=1,2,3 \\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

$\left\{\begin{array}{l}p \text { directions } \\ 3 p \text { plane waves }\end{array}\right.$ same approximation as for Helmholtz, \longrightarrow non-Trefftz functions!

Maxwell plane waves

Basis of Maxwell plane wave functions:

$$
\begin{aligned}
& \mathbf{A}_{k} e^{i \omega \mathbf{x} \cdot \mathbf{d}_{k}}, \quad \mathbf{d}_{k} \times \mathbf{A}_{k} e^{i \omega \mathbf{x} \cdot \mathbf{d}_{k}} \\
& \left|\mathbf{A}_{k}\right|=\left|\mathbf{d}_{k}\right|=1,\left(\mathbf{A}_{k}, \mathbf{d}_{k}\right)=0
\end{aligned}
$$

Goal: prove convergence using $2 p$ plane waves and preserving the Trefftz property.

P.W. approximation: lazy approach

1 u Maxwell \Rightarrow curl \mathbf{u} Maxwell \Rightarrow curl \mathbf{u} Helmoltz

$$
\|\operatorname{curl} \mathbf{u}-\underset{\text { vector p.w. }}{\text { Helmholtz }}\|_{j, \omega, D} \leq C\left(h q^{-\lambda}\right)^{K+1-j}\|\operatorname{curl} \mathbf{u}\|_{K+1, \omega, D}
$$

2 With $j \geq 1$, apply curl and reduce j (bad!):

$$
\begin{gathered}
\| \text { curl curl } \mathbf{u}-\text { curl }\left[\begin{array}{c}
\text { Helmholtz } \\
\text { vector p.w. }
\end{array}\right]\left\|_{j-1, \omega, D} \leq C\left(h q^{-\lambda}\right)^{K+1-j}\right\| \operatorname{curl} \mathbf{u} \|_{K+1, \omega, D} \\
\Downarrow
\end{gathered}
$$

3. $\| \omega^{2} \mathbf{u}$ - Maxwell p.w. $\left\|_{j-1, \omega, D} \leq C\left(h q^{-\lambda}\right)^{K+1-j}\right\| \operatorname{curl} \mathbf{u} \|_{K+1, \omega, D}$

Mismatch between Sobolev indices and convergence order: not sharp!

Vector S.H.: welcome to the jungle!

Two different orthogonal basis for $\left(L^{2}\left(S^{2}\right)\right)^{3}$:

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathbf{Y}_{l, m}(\mathbf{x})=Y_{l, m}(\mathbf{x}) \frac{\mathbf{x}}{|\mathbf{x}|} \\
\mathbf{\Psi}_{l, m}(\mathbf{x})=|\mathbf{x}| \nabla Y_{l, m}(\mathbf{x}) \\
\boldsymbol{\Phi}_{l, m}(\mathbf{x})=\mathbf{x} \times \nabla Y_{l, m}(\mathbf{x})
\end{array}\right. \\
\left\{\begin{aligned}
\mathbf{I}_{l, m}(\mathbf{x}) & =(l+1) \mathbf{Y}_{l+1, m}(\mathbf{x})+\mathbf{\Psi}_{l+1, m}(\mathbf{x}) \\
\mathbf{T}_{l, m}(\mathbf{x}) & =-\boldsymbol{\Phi}_{l, m}(\mathbf{x}) \\
\mathbf{N}_{l, m}(\mathbf{x}) & =l \mathbf{Y}_{l-1, m}(\mathbf{x})-\boldsymbol{\Psi}_{l-1, m}(\mathbf{x})
\end{aligned}\right.
\end{gathered}
$$

Vector S.H.: welcome to the jungle!

Two different orthogonal basis for $\left(L^{2}\left(S^{2}\right)\right)^{3}$:

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathbf{Y}_{l, m}(\mathbf{x})=Y_{l, m}(\mathbf{x}) \frac{\mathbf{x}}{|\mathbf{x}|} \\
\boldsymbol{\Psi}_{l, m}(\mathbf{x})=|\mathbf{x}| \nabla Y_{l, m}(\mathbf{x}) \\
\boldsymbol{\Phi}_{l, m}(\mathbf{x})=\mathbf{x} \times \nabla Y_{l, m}(\mathbf{x})
\end{array}\right\} \in L_{\perp}^{2}\left(S^{2}\right) \\
\left\{\begin{array}{l}
\mathbf{I}_{l, m}(\mathbf{x})=\left(S^{2}\right) \\
\mathbf{T}_{l, m}(\mathbf{x})=-\boldsymbol{\Phi}_{l, m}(\mathbf{x}) \\
\mathbf{N}_{l, m}(\mathbf{x})=l \mathbf{Y}_{l+1, m}(\mathbf{x})+\mathbf{\Psi}_{l+1, m}(\mathbf{x}) \\
(\mathbf{x})-\Psi_{l-1, m}(\mathbf{x})
\end{array}\right\} \in L_{T}^{2}\left(S^{2}\right)
\end{gathered}
$$

$\boldsymbol{\Phi}_{l, m}, \boldsymbol{\Psi}_{l, m}$ tangential to $S^{2}, \mathbf{Y}_{l, m}$ orthogonal,
$\mathbf{I}_{l, m}, \mathbf{T}_{l, m}, \mathbf{N}_{l, m}$ are traces of l-homogeneous harmonic vector polynomials.

Maxwell-GHPs

Herglotz functions theory \rightarrow basis of Maxwell-GHPs:

$$
\left\{\begin{array}{l}
\mathbf{b}_{l, m}^{1}(\mathbf{x})=j_{l}(\omega r) \Phi_{l, m} \\
\mathbf{b}_{l, m}^{2}(\mathbf{x})=\frac{l+1}{2 l+1} j_{l-1}(\omega r) \mathbf{I}_{l-1, m}+\frac{l}{2 l+1} j_{l+1}(\omega r) \mathbf{N}_{l+1, m}
\end{array}\right.
$$

Maxwell-GHPs

Herglotz functions theory \rightarrow basis of Maxwell-GHPs:

$$
\left\{\begin{array}{l}
\mathbf{b}_{l, m}^{1}(\mathbf{x})=j_{l}(\omega r) \Phi_{l, m} \\
\mathbf{b}_{l, m}^{2}(\mathbf{x})=\frac{l+1}{2 l+1} j_{l-1}(\omega r) \mathbf{I}_{l-1, m}+\frac{l}{2 l+1} j_{l+1}(\omega r) \mathbf{N}_{l+1, m}
\end{array}\right.
$$

$\ln \mathbf{b}_{l, m}^{2}$ there are two Bessel functions of different indices:

$$
\mathbf{v}_{2}\left[\mathbf{b}_{l, m}^{2}\right] \text { is a non-homogeneous polynomial ! }
$$

\rightarrow approximation theory is a bit more complicated.

Approximation in h by Maxwell-GHPs

- (VERFÜRTH 1999) recursive definition of approximating polynomial $\mathbf{P}_{m, B}$ on D : orders in h;
- for harmonic vector fields $\mathbf{P}_{m, B}$ is the Taylor polynomial!
- approximate $\mathbf{P}_{m, B}$ with $\left\{\mathbf{V}_{2}\left[\mathbf{b}_{l, m}^{1}\right]\right\}_{l \leq L} \cup\left\{\mathbf{V}_{2}\left[\mathbf{b}_{l, m}^{2}\right]\right\}_{l \leq L+1}$;
- Vekua continuity $\Rightarrow h$-estimate for Maxwell solutions:

$$
\left\|\mathbf{u}-\mathbf{G}_{L}\right\|_{j, \omega, D} \leq C(\omega h) h^{L+1-j}\|\mathbf{u}\|_{L+1, \omega, D}
$$

- same order as Helmholtz, using a few more functions:

$$
2(L+1)^{2}-2+2 L+3 .
$$

p-estimate impossible with this approach without any new ideas for the Helmholtz case.

Approximation in h by Maxwell plane waves

GHPs \leftrightarrow plane waves approximation relies on Jacobi-Anger exp.

We need a vector version of the Jacobi-Anger expansion that "preserves" Maxwell property:

$$
\begin{aligned}
e^{i \omega \mathbf{x} \cdot \mathbf{d}} \mathrm{Id}= & 4 \pi \sum_{l \geq 0} \sum_{|m| \leq l} i^{l}\left(\frac{1}{l(l+1)} \mathbf{b}_{l, m}^{1}(\omega \mathbf{x}) \overline{\boldsymbol{\Phi}_{l, m}(\mathbf{d})}\right. \\
& -\frac{i}{l(l+1)} \mathbf{b}_{l, m}^{2}(\omega \mathbf{x}) \overline{\Psi_{l, m}(\mathbf{d})} \quad-i \mathbf{b}_{l, m}^{\perp}(\omega \mathbf{x}) \overline{\mathbf{Y}_{l, m}(\mathbf{d})}
\end{aligned}
$$

($\mathbf{b}_{l, m}^{\perp}$ are the non-Maxwell vector GHPs).

Approximation in h by Maxwell plane waves

GHPs \leftrightarrow plane waves approximation relies on Jacobi-Anger exp.

We need a vector version of the Jacobi-Anger expansion that "preserves" Maxwell property:

$$
\begin{aligned}
e^{i \omega \mathbf{x} \cdot \mathbf{d}} \mathbf{A}= & 4 \pi \sum_{l \geq 0} \sum_{|m| \leq l} i^{l}\left(\frac{1}{l(l+1)} \mathbf{b}_{l, m}^{1}(\omega \mathbf{x}) \overline{\mathbf{\Phi}_{l, m}(\mathbf{d})} \cdot \mathbf{A}\right. \\
& -\frac{i}{l(l+1)} \mathbf{b}_{l, m}^{2}(\omega \mathbf{x}) \overline{\mathbf{\Psi}_{l, m}(\mathbf{d})} \cdot \mathbf{A}-\underbrace{i \mathbf{b}_{l, m}^{\perp}(\omega \mathbf{x}) \overline{\mathbf{Y}_{l, m}(\mathbf{d})} \cdot \mathbf{A}}_{=0 \text { if } \mathbf{d} \cdot \mathbf{A}=0})
\end{aligned}
$$

($\mathbf{b}_{l, m}^{\perp}$ are the non-Maxwell vector GHPs).
Maxwell PW = infinite linear combination of Maxwell GHPs.
Still some (technical ?) problems in the residual estimate to prove approximation in h.

Thank You!

