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Model problem

Homogeneous Helmholtz equation with impedance boundary
conditions:

{

−∆u − ω2u = 0 in Ω,

∇u · n+ iωu = g on ∂Ω,

Ω ⊂ R
N , N = 2,3, bounded polyhedral domain, g ∈ L2(∂Ω),

wavenumber ω > 0.

With large ω, standard finite elements are affected by the
numerical dispersion and the pollution effect:

special FEM are required.



Trefftz methods for Helmholtz

The Trefftz methods use basis functions that are solutions of the
PDE under examination in each element.

Homogeneous Helmholtz equation: −∆u − ω2u = 0

plane wave basis functions (UWVF, PWDG, DEM, VTCR,. . . )

x 7→ eiωd·x , |d| = 1;

circular / spherical / corner wave basis functions
(least-squares Trefftz,. . . );

singular / fundamental basis functions (MFS,. . . );

. . .
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The best approximation estimate

The analysis of plane waves Trefftz methods requires best
approximation estimates:

−∆u − ω2u = 0 in D, diamD = h, p ∈ N,

inf
α∈Cp

∥
∥
∥
∥
∥
u −

p
∑

k=1

αke
iωdk ·x

∥
∥
∥
∥
∥
H j(D)

≤ C ǫ(h,p) ‖u‖HK+1(D) ,

with ǫ(h,p)
h→0−−−→
p→∞

0.



The plan

Only few results are available [CESSENAT AND DESPRÉS 1998,
MELENK 1995], improvement and generalization are needed.

Our goals:

estimates for plane and circular/spherical waves;

estimates both in h and p;

estimates in 2 and 3 dimensions;

explicit dependence of the bounds on ω.



Outline

Vekua theory;

approximation by generalized harmonic polynomials;

approximation by plane waves;

approximation for Maxwell equations (only some ideas!).



Part I

Vekua theory



The Vekua theory in N dimensions

D ⊂ RN , N ≥ 2,
star-shaped.

h

rh

0

Given ω > 0, define two continuous functions:

M1,M2 : D × [0,1]→ R

M1(x , t) = −
ω|x |
2

√
t
N−2

√
1− t

J1(ω|x |
√
1− t),

M2(x , t) = −
iω|x |
2

√
t
N−3

√
1− t

J1(iω|x |
√

t(1 − t)).

J1 is the ordinary Bessel function of the first kind and order 1.



The Vekua operators

V1,V2 : C(D)→ C(D),

Vj[φ](x) := φ(x) +

∫ 1

0

Mj(x , t)φ(tx)dt, a.e. x ∈ D, j = 1,2.

Short Vekua’s story:

Vekua 1942, Helmholtz equation in N dimensions, no proofs;

Vekua 1948 (translated in 1967), elliptic equations in 2
dimensions, one page for N -dimensional Helmholtz;

Henrici 1957, elliptic equations only in 2 dimensions.

→ N -dimensional version almost forgotten.
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The properties of Vekua operators

1 V2 = (V1)
−1

2 (−∆− ω2) u = 0 ⇐⇒ ∆V2[u] = 0

Main idea of Vekua theory:

Helmholtz solutions
V1←−−−−−−−−−−−−→
V2

Harmonic functions
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The continuity of Vekua operators

Weighted Sobolev norms:

‖u‖j,ω,D :=

 

j
X

k=0

ω
2(j−k) |u|2k,D

!

1
2

, ω > 0, j ∈ N.

∆φ = 0, (−∆− ω2)u = 0:

‖V1[φ]‖j,ω,D ≤ C1(N , j, ρ)
(
1+ (ωh)2

)
‖φ‖j,ω,D j ≥ 0 ,

‖V2[u]‖j,ω,D ≤ C2(N , j, ρ)
(
1+ (ωh)4

)
e

3
4ωh ‖u‖j,ω,D j ≥ 1 ,

N = 2,3, u, φ ∈ H j(D).



The interior estimates

Key ingredients for the proof of the continuity of V1 and V2 are
the interior estimates.

For harmonic functions, these are well-known:

∆φ = 0 ⇒ |φ(x)|2 ≤ 1

RN |B1|
‖φ‖20,B(x,R)

.

For Helmholtz solutions, N = 2, 3, we can prove estimates
that are explicit in ω:

−∆u − ω2u = 0

⇓

|u(x)| ≤ C R− N
2 (1 + ω2R2)

(

‖u‖0,B(x,R)
+ R ‖∇u‖0,B(x,R)

)

,

|∇u(x)| ≤ C R− N
2

(

ω2R ‖u‖0,B(x,R)
+ (1 + ω2R2) ‖∇u‖0,B(x,R)

)

.



Part II

Approximation by GHPs



The approximation by GHPs

−∆u − ω2u = 0, u ∈ Hk+1(D),

↓ V2

V2[u] is harmonic =⇒ can be approximated
by harmonic polynomials

(Bramble-Hilbert, complex analysis techniques, . . . ),

↓ V1

u can be approximated by

V1

[
harmonic
polynomials

]

=:
generalized
harmonic

polynomials
(GHPs).
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Generalized harmonic polynomials

In 2D, the GHPs are circular waves:

Q(x) = eilψ Jl(ωr), in polar coordinates x = reiψ , l ∈ Z,

Jl = Bessel functions.

In 3D, the GHPs are spherical waves:

Q(x) = Yl,m

(
x
|x|

)
jl(ω|x |), 0 ≤ |m| ≤ l ∈ N,

Yl,m = spherical harmonics,
jl = spherical Bessel functions.

Both belong to the family of the Herglotz functions.

The GHPs are also called Fourier-Bessel functions.



Generalized harmonic polynomials

Real part of GHPs in [−1,1]2: V1[z
l ], l = 0,2,4, ω = 10
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The approximation by GHPs: h-convergence

inf

P∈

(

harmonic
polynomials
of degree ≤L

)

‖u − V1[P ]‖j,ω,D ≤ C inf
P
‖V2[u]− P‖j,ω,D contin. of V1,

≤ C hk+1−j ǫ(L) ‖V2[u]‖k+1,ω,D
harmonic

approx. results,

≤ C hk+1−j ǫ(L) ‖u‖k+1,ω,D contin. of V2.

For the h-convergence it is enough to use Bramble-Hilbert
theorem: it provides a harmonic polynomial!

The constant C depends on ωh, not on ω alone:

C = C · (1+ ωh)j+6e
3
4ωh .



Harmonic approximation: p-convergence, 2D

In 2 dimensions, if D satisfies the ‘exterior cone condition’, then:

ǫ(L) =

(
log(L + 2)

L + 2

)λ(k+1−j)

.

If D is convex, λ = 1. Otherwise λ = min
re-entrant corner of D

π
.

Sharp p-estimate! [MELENK]

In 2D we can use complex analysis:

conformal mappings B1 ↔ D;

φ harmonic and real→ φ = Re[Φ holomorphic];

complex interpolation on B1;

every (complex) polynomial is harmonic;

. . .



Harmonic approximation: p-convergence, N -D

An analogous result holds in N dimensions:

ǫ(L) = L−λ(k+1−j),

where λ > 0 is a geometric unknown parameter.

Follows from:

an exponential approximation result for compact subsets
by [BAGBY, BOS AND LEVENBERG 1996] in L∞-norm;

harmonic dilation and deformation technique.

If u is the restriction of a solution in a larger domain (2 or 3D),
the convergence in L is exponential.



The approximation by GHPs: h&p-convergence

Harmonic polynomial approximation:

2-3D h-conv. harmonic Bramble-Hilbert: easy

2D p-conv. sharp estimate by Melenk: complex analysis

3D p-conv. new estimates,
order of convergence not explicit

↓ Vekua continuity

If −∆u − ω2u = 0, N = 2,3, 0 ≤ j ≤ k ≤ L

inf
Q∈

n

GHPs
of degree ≤L

o

‖u −Q‖j,ω,D ≤ C(ωh) hk+1−j
L
−λ(k+1−j) ‖u‖k+1,ω,D ,

The rate λ > 0 depends only on the shape of D.
If it is convex and 2D, then λ = 1− ε.

Best approx. estimate for spherical waves Trefftz methods!



Part III

Approximation by plane waves



The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves:
Jacobi-Anger expansion

2D e
iz cos θ =

X

l∈Z

i
l
Jl(z) e

ilθ
, z ∈ C, θ ∈ R,

3D e
irξ·η

| {z }

plane wave

= 4π
X

l≥0

l
X

m=−l

i
l
jl(r) Yl,m(ξ)
| {z }

GHP

Yl,m(η), ξ, η ∈ S
2
, r ≥ 0.

We need the other way round:

GHP = linear combination of plane waves

→ truncation of J-A expansion,
→ solution of a linear system,
→ residual estimates.



The approximation of GHPs by plane waves: 2D

[ x = |x|eiψ , dk = (cos θk , sin θk) ]
GHP−

q
∑

k=−q

αk eiωx·dk

=

L∑

l=−L

al Jl(ω|x |) eilψ

︸ ︷︷ ︸

V [P], degree L

−
∑

l∈Z

Jl(ω|x |) eilψ i l
q

∑

k=−q

αk e−ilθk

︸ ︷︷ ︸

Jacobi-Anger

= −
∑

|l|>q

i l Jl(ω|x |) eilψ

q
∑

k=−q

αk e−ilθk ,

where the vector αk is solution of a
Vandermonde linear system:

{e−i l θk}l,k · αk = i−lal

bound on the inverse matrix;

control on the minimal angular distance between plane
waves directions (non equispaced case).



The approximation of GHPs by plane waves: 2D

Given a harmonic polynomial P of degree at most L(≥ K),
there exists α ∈ C2q+1 such that

‚

‚

‚

‚

‚

V1[P]−

2q+1
X

k=1

αk e
iωx·dk

‚

‚

‚

‚

‚

L∞(B2h )

≤ C(ρ,L,ωh) h
K−1

„

c0 (ωh)2

q + 1

«

q+1
2

‖P‖K,ω,D .

The convergence is faster than exponential in q.

The constants C and c0 can be made completely explicit.

Cauchy estimates
Vekua continuity

}

→ bound in Sobolev norms.



The choice of the directions in 3D

3D Jacobi-Anger gives the matrix {M}l,m;k = Yl,m(dk)
that depends on the choice of the directions.

Problem: an upper bound on
∥
∥M−1

∥
∥ is needed but M is not

even always invertible!

Solution:

there exists an optimal choice s.t.
∥
∥M−1

∥
∥
1
≤ 2
√
π p;

it corresponds to the extremal systems of Sloan and
Womersley for quadrature on S2;

some simple choices of points give good result,
heuristic: dk have to be as “equispaced” as possible.

With this choice→ analogous results as in 2D.
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The final approximation by plane waves

−∆u − ω2u = 0

↓ Vekua theory: algebraic in h and p,
GHPs
↓ Jacobi-Anger: algebraic in h,

Plane waves > exponential in p.

Final estimate

inf
α∈Cp

∥
∥
∥
∥
∥
u −

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

≤ C hK+1−jq−λ(K+1−j) ‖u‖K+1,ω,D

In 2D: p = 2q + 1, λ(D) explicit, ∀ dk .
In 3D: p = (q + 1)2, λ(D) unknown, special dk .



Approximation for Helmholtz eq.: conclusions

What we have proved:

hp-estimates for circular/spherical and plane waves in 2D
and 3D,

all the constants are explicit in ωh,

all the orders in h are sharp.

Open problems / work in progress:

explicit order of convergence in p in 3D convex domains,

Vekua theory and approximation for Maxwell equation.



Part IV

Approximation for Maxwell equations



Maxwell equation

The vector field u is solution of Maxwell equations

curl curlu− ω2u = 0

if and only if
{

−∆uj − ω2uj = 0, j = 1,2,3,

divu = 0.

{

p directions
3p plane waves

−→
same approximation as for Helmholtz,

non-Trefftz functions!
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Maxwell plane waves

Ak

dk

A dk kx

Basis of Maxwell plane wave functions:

Ake
iωx·dk , dk × Ake

iωx·dk ,

|Ak | = |dk | = 1, (Ak ,dk) = 0.

Goal: prove convergence using 2p plane waves and
Goal: preserving the Trefftz property.



P.W. approximation: lazy approach

1 u Maxwell ⇒ curlu Maxwell ⇒ curlu Helmoltz
‚

‚

‚

‚

curlu−
Helmholtz
vector p.w.

‚

‚

‚

‚

j,ω,D

≤ C(hq−λ)K+1−j ‖curlu‖K+1,ω,D

2 With j ≥ 1, apply curl and reduce j (bad!):

‚

‚

‚

‚

curl curlu− curl

»

Helmholtz
vector p.w.

–

‚

‚

‚

‚

j−1,ω,D

≤ C(hq−λ)K+1−j ‖curlu‖K+1,ω,D

⇓

3

∥
∥
∥
∥
ω2u−Maxwell p.w.

∥
∥
∥
∥
j−1,ω,D

≤ C(hq−λ)K+1−j ‖curlu‖K+1,ω,D

Mismatch between Sobolev indices and convergence order:
not sharp!



Vector S.H.: welcome to the jungle!

Two different orthogonal basis for
(
L2(S2)

)3
:







Yl,m(x) = Yl,m(x)
x

|x|
}

L2
⊥⊥⊥(S

2)

ΨΨΨl,m(x) = |x| ∇Yl,m(x)

ΦΦΦl,m(x) = x×∇Yl,m(x)

}

∈ L2
T (S

2)







Il,m(x) = (l + 1) Yl+1,m(x) +ΨΨΨl+1,m(x)

Tl,m(x) = −ΦΦΦl,m(x)
}

∈ L2
T (S

2)

Nl,m(x) = l Yl−1,m(x)−ΨΨΨl−1,m(x)

ΦΦΦl,m ,ΨΨΨl,m tangential to S2, Yl,m orthogonal,

Il,m ,Tl,m ,Nl,m are traces of l-homogeneous harmonic vector
polynomials.
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Maxwell-GHPs

Herglotz functions theory→ basis of Maxwell-GHPs:






b1
l,m(x) = jl(ωr) ΦΦΦl,m

b2
l,m(x) =

l + 1

2l + 1
jl−1(ωr) Il−1,m +

l

2l + 1
jl+1(ωr) Nl+1,m .

In b2
l,m there are two Bessel functions of different indices:

V2[b
2
l,m ] is a non-homogeneous polynomial !

→ approximation theory is a bit more complicated.
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Approximation in h by Maxwell-GHPs

[VERFÜRTH 1999] recursive definition of approximating
polynomial Pm,B on D: orders in h;

for harmonic vector fields Pm,B is the Taylor polynomial!

approximate Pm,B with {V2[b
1
l,m ]}l≤L ∪ {V2[b

2
l,m ]}l≤L+1;

Vekua continuity ⇒ h-estimate for Maxwell solutions:

‖u−QL‖j,ω,D ≤ C(ωh) hL+1−j ‖u‖L+1,ω,D

same order as Helmholtz, using a few more functions:

2(L + 1)2 − 2+ 2L + 3.

p-estimate impossible with this approach without any new
ideas for the Helmholtz case.



Approximation in h by Maxwell plane waves

GHPs↔plane waves approximation relies on Jacobi-Anger exp.

We need a vector version of the Jacobi-Anger expansion that
“preserves” Maxwell property:

eiωx·dIdA =4π
∑

l≥0

∑

|m|≤l

i l
(

1
l(l+1)b

1
l,m(ωx) ΦΦΦl,m(d) · A

− i
l(l+1) b

2
l,m(ωx) ΨΨΨl,m(d) · A− i b⊥

l,m(ωx) Yl,m(d) · A
)

(b⊥
l,m are the non-Maxwell vector GHPs).

Maxwell PW = infinite linear combination of Maxwell GHPs.

Still some (technical ?) problems in the residual estimate to
prove approximation in h.
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d

Y (d)lm

A

S2

We need a vector version of the Jacobi-Anger expansion that
“preserves” Maxwell property:

eiωx·dIdA =4π
∑

l≥0

∑

|m|≤l

i l
(

1
l(l+1)b

1
l,m(ωx) ΦΦΦl,m(d) · A

− i
l(l+1) b

2
l,m(ωx) ΨΨΨl,m(d) · A− i b⊥

l,m(ωx) Yl,m(d) · A
︸ ︷︷ ︸

=0 if d·A=0

)

(b⊥
l,m are the non-Maxwell vector GHPs).

Maxwell PW = infinite linear combination of Maxwell GHPs.

Still some (technical ?) problems in the residual estimate to
prove approximation in h.



THANK YOU!
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