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Adaptive finite element methods (AFEM)

Let h0 be an initial triangulation and set k = 0.

SOLVE: Compute the solution uk of the discrete problem;

ESTIMATE: Compute an estimator for the error in terms of the discrete
solution uk and given data;

MARK: Use the estimator to mark a subsetℳk (edges or cells) for
refinement.

REFINE: Refine the marked subsetℳk to obtain the mesh hk+1,
increase k and go to step SOLVE.

Popular for more than 30 years, why?

How about the convergence and convergence rate of the error?
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Adaptive finite element methods (AFEM)

Convergence history of AFEM (residual-based a posteriori error estimator)

Babuska and Rheinboldt [1978] (1D)

Dörfler [1996] (2D): oscillation small enough

Morin, Nochetto, and Siebert [2000] : mark oscillation in every step by
interior node property

Binev, Dahmen, and DeVore [2004]: complexity estimate (need
coarsening)

Stevenson [2007]: complexity estimate without coarsening

Cascon, Kreuzer, Nochetto, Siebert [2008]: without marking oscillation
and no interior node property
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Adaptive finite element methods (AFEM)

Our contribution: joint with Roland Becker and Zhongci Shi

For adaptive conforming linear elements: introduce an adaptive
marking strategy and an adaptive stopping criterion for the iterative
solution of the discrete system

The obtained refinement will in general be dominated by the edge
residuals

Convergence analysis and quasi-optimal complexity

Optimal error estimate in 2D

Extensions to adaptive mixed finite element methods

Extensions to adaptive nonconforming finite element methods

Extensions to adaptive finite element methods for Stokes problem
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Adaptive conforming finite element methods

Model problem and linear approximations

For simplicity, we consider{
−Δu = f , in Ω ⊂ ℝ2,

u = 0, on ∂Ω.
(1)

The Ritz projection uh ∈ Vh is defined by

(∇uh,∇vh) = (f , vh) ∀vh ∈ Vh, (2)

where Vh is the standard linear conforming finite element space.
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Error indicators

We define the family of admissible meshes ℋ. For any h ∈ ℋ, the set of
interior edges is denoted by ℰh and the set of nodes by Nh.
Let !z be the set of cells joining a node z ∈ Nh and �!(f ) :=

∫
!

f dx/∣!∣.
We define

oscz := ∣!z ∣1/2 ∥f − �!z f∥!z , osc2
h(P) :=

∑
z∈P

osc2
z

JE (vh) := ∣E ∣1/2 ∥[∂vh

∂n
]∥E , J2

h (vh,ℱ) :=
∑
E∈ℱ

J2
E (vh).

We set for brevity osch := osch(Nh) and Jh(vh) := JH(vh, ℰh).
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Inexact solutions of the discrete problem

A posteriori error estimate for iteration errors

Let um
h be an iterative solution and �h(um

h ) be an estimator satisfying

∣uh − um
h ∣21 ≤ Cit�

2
h (um

h ). (3)

A simple one for some iteration methods (CG, MG):

�h(um
h ) := ∣um+1

h − um
h ∣1. (4)

A posteriori estimate for CG: e.g., [StrakovsVohralik09],
[ArioliGeorgoulis09]

We also developed a practical one for MG:

�h(um
h ) :=

k∑
j=1

∥hj−1Rj (ṽj )∥, (5)

where Rj (ṽj ) can be related to the residuals appearing in the multigrid
iteration.
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Adaptive algorithms

Algorithm 1: collective marking

Choose parameters 0 < �, � < 1 and an initial mesh h0, and set k = 0.

Do mk iterations for the discrete system (2) to obtain umk
hk

, mk is
determined by:

�2
hk (umk

hk
) ≤ � (J2

hk (umk
hk

) + osc2
hK ). (6)

Mark a set ℱ ⊂ ℰhk with minimal cardinality such that

J2
hk (ℱ) + osc2

hk (ℱ) ≥ � (J2
hk (umk

hk
) + osc2

hk ).

Adapt the mesh : hk+1 := Refine(hk ,ℱ).

Set k := k + 1 and go to the next step.
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Adaptive algorithms

Algorithm 2: adaptive marking

Choose parameters 0 < �, �, � < 1,  > 0 and an initial mesh h0, and
set k = 0.

Do mk iterations for the discrete system (2) to obtain umk
hk

, mk is
determined by (6).

If
osc2

hk ≤ J2
hk (umk

hk
),

mark a set ℱ ⊂ ℰhk with minimal cardinality such that

J2
hk (ℱ) ≥ � J2

hk (umk
hk

), (7)

else find a set P ⊂ Nhk with minimal cardinality such that

osc2
hk (P) ≥ � osc2

hk . (8)

Adapt the mesh : hk+1 := Refine(hk ,ℱ).
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Upper bounds

Lemma 1

(upper bounds) Let h ∈ ℋ. There exists a constant C1 > 0 depending only
on the minimum angle of h0 such that for uh ∈ Vh the solution of (47) and
arbitrary wh ∈ Vh

∣u − wh∣21 ≤ C1(J2
h (wh) + osc2

h) + 2 ∣uh − wh∣21. (9)

Suppose in addition that H ∈ ℋ and ℱ ⊂ ℰH are such that h = ℛloc(H,ℱ).
Letting P ⊂ NH the set of nodes included in ℱ and uH ∈ VH the discrete
solution, we have

∣uh − wH ∣21 ≤ C1

(
J2

H(wH ,ℱ) + osc2
H(P) + ∣uH − wH ∣21

)
∀wH ∈ VH , (10)

and
#ℱ ≤ C3 (Nh − NH). (11)
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Lower bounds

Lemma 2

(lower bounds) There exists a constant C2 > 0 depending only on the
minimum angle of h0 such that for all vH ∈ VH

J2
H(vH) ≤ C2

(
∣u − vH ∣21 + osc2

H

)
. (12)

There exists a constant C4 > 0 depending only on the minimum angle of h0

such that for ℱ ⊂ ℰH , h = ℛloc(H,ℱ) and arbitrary � > 0

J2
h (vh) ≤ (1+�)J2

H(vH)−1 + �

2
J2

H(vH ,ℱ)+C4(1+1/�)∣vh−vH ∣21 ∀vh ∈ Vh, vH ∈ VH .

(13)
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Convergence of Algorithm 1

Theorem 3
Let {hk}k≥0 be a sequence of meshes generated by Algorithm 1 and let
{umk

hk
}k≥0 be the corresponding sequence of finite element solutions.

Suppose that
0 < � < C∗�2, (14)

then there exist constants �1 > 0, �2 > 0, and � < 1 such that for all
k = 1, 2, . . .

e(hk+1,mk+1) ≤ � e(hk ,mk ), (15)

where e(h,m) := ∣u − um
h ∣21 + �1 osc2

h + �2 J2
h (um

h ).
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Optimal Marking cardinality and class of approximation

Assumption Let hk , k = 0, . . . n be a sequence of locally refined meshes
created by the local mesh refinement algorithm, starting from the initial
mesh h0. Let ℱk ⊂ ℰhk , k = 0, . . . n − 1 be the collection of all marked edges
in step k . Then there exists a mesh-independent constant C0 such that

Nhn ≤ Nh0 + C0

n−1∑
k=0

#ℱk . (16)

(16) is known to be true for the newest vertex bisection algorithm, see
[BinevDahmenDeVore04] and [Stevenson08].
Next we define the approximation class

Ws :=
{

(u, f ) ∈ (H1
0 (Ω), L2(Ω)) : ∥(u, f )∥Ws < +∞

}
. (17)

with
∥(u, f )∥Ws := sup

N≥N0

Ns inf
h∈HN

(
inf

vh∈Vh
∣u − vh∣21 + osc2

h

)
.
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Quasi-optimality and error estimate of Algorithm 1

Theorem 4
Let {hk}k≥0 be a sequence of meshes generated by Algorithm 1 and let
{umk

hk
}k≥0 be the corresponding sequence of finite element solutions.

Suppose that
0 < � < C∗�2, 0 < � < �∗ < 1, (18)

then we have the following estimate on the complexity of the algorithm:

Nk ≤ C "
−1/s
k . (19)

Furthermore, in case of 2D, there exists k0 ≥ 1, such that for all
k = k0, k0 + 1, . . ., we have

e(hk ,mk ) ≤ C (Nk − Nk0 )−1∥f∥2. (20)
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Convergence of Algorithm 2

Theorem 5
Let {hk}k≥0 be a sequence of meshes generated by Algorithm 2 and let
{umk

hk
}k≥0 be the corresponding sequence of iterative finite element

solutions. Suppose that
0 < � < C∗�2, (21)

then there exist constants �1 > 0, �2 > 0, and � < 1 such that for all
k = 1, 2, . . .

e(hk+1,mk+1) ≤ � e(hk ,mk ). (22)
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Quasi-optimality and error estimate of Algorithm 2

Theorem 6
Let {hk}k≥0 be a sequence of meshes generated by Algorithm 2 and let
{umk

hk
}k≥0 be the corresponding sequence of FE solutions. Suppose

0 < � < C∗�2, 0 < � < �∗ < 1, 0 <  < ∗, (23)

then we have the following estimate on the complexity of the algorithm:

Nk ≤ C "
−1/s
k . (24)

Furthermore, in case of 2D, there exists k0 ≥ 1, such that for all
k = k0, k0 + 1, . . ., we have

e(hk ,mk ) ≤ C (Nk − Nk0 )−1∥f∥2. (25)
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Features of the results

Optimal convergence rate after a finite steps.

In the SOLVE step: CG, MG will be stopped by an adaptive stopping
criteria with

√
�(Jh + osch), compared with a fixed stopping criterion

(e.g., 10−8) in the usual way.

In the REFINE step: no interior node property, which admits almost all
the classical refine rules, e.g., newest vertex bisection, reg-green
-refinement, etc.

In Algorithm 2, the edge residuals alone dominate the error estimation
in most cases, which verifies the well known result in practice.
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Numerical experiment

We solve Poisson’s equation on the L-shaped domain with Dirichlet
boundary condition. The exact solution is u(r , �) = r 2/3 sin( 2�

3 ).

Based on the local multigrid algorithm developed by Chen and Wu [06],
which has optimal computational cost for discrete systems of PDE.

SAM Shipeng MAO
Convergence and quasi-optimality of adaptive finite element

methods 21/50



Outline
Adaptive finite
element methods
(AFEM)

Convergence
analysis of
adaptive
conforming finite
element methods

Convergence
analysis of
adaptive
nonconforming
finite element
methods

Convergence
analysis of
adaptive mixed
finite element
methods

Extensions and
open problem

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Adaptive mesh with 1005 elements (11 step)
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Figure 2: Adaptive mesh with 11327 elements (22 step)
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Figure 5: Number of iterations of every step: 26 vs 6
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Figure 9: Iteration time of every step: 79 vs 25.5 vs 5.5
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Convergence analysis of adaptive nonconforming finite
element methods
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Adaptive nonconforming finite element methods (ANFEM)

We develop a practical adaptive algorithm for linear nonconforming
finite element method.

It is based on an adaptive marking strategy and an adaptive stopping
criteria for iterative solution.

We prove its convergence and optimal error estimate

The main difficulties are the proof of the quasi-orthogonality, local upper
and lower bounds of ANFEM.
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Nonconforming FE approximations

Let Vh denote the nonconforming P1 finite element space (Crouzeix-Raviart
element over Th, which is given by

Vh :=

{
vh ∈ L2(Ω);∀K ∈ Kh, vh∣K ∈ P1(K ); ∀E ∈ ℰh,

∫
E

[vh]E ds = 0
}
,

here [vh]E stands for the jump of vh across E and vanishes when E ⊂ ∂Ω.
Let uh denote the solution of the discrete problem{

Find uh ∈ Vh, such that

ah(uh, vh) = (f , vh), ∀ vh ∈ Vh,
(26)

where ah(uh, vh) =
∑

K∈Kh

∫
K ∇uh∇vh dx .

We suppose that �2
h (um

h ) satisfies the following upper bound

∣uh − um
h ∣21,h ≤ Cit�

2
h (um

h ). (27)

Set

∥ ⋅ ∥h =

⎛⎝ ∑
K∈Kh

∣ ⋅ ∣21,K

⎞⎠ 1
2

.
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Error estimators

We define edge residuals for E ∈ ℰh and any subset ℱ ⊂ ℰh

�h,E (vh) := h1/2
E

∥∥∥∥[
∂vh

∂s
]

∥∥∥∥
0,E

, �h(vh,ℱ) :=

(∑
E∈ℱ

�2
h,E (vh)

)1/2

, (28)

together with volume residuals for K ∈ Kh and any subsetℳ⊂ Kh

�K := ∣K ∣1/2∥f∥0,K , �h(ℳ) :=

(∑
K∈ℳ

�2
K

)1/2

. (29)

We next define an oscillation term by

oscE := ∣!E ∣1/2∥f − �!E f∥0,!E , osch(ℱ) :=

(∑
E∈ℱ

osc2
E

)1/2

. (30)

We set for brevity �h(vh) := �h(vh, ℰh), osch := osch(ℰh) and �h := �h(Kh).
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Algorithm ANFEM

(0) Choose parameters 0 < �, � < 1,  > 0, � > 0 and an initial mesh h0,
and set k = 0.

(1) Do mk iterations of the discrete system (26) with h replaced by hk to
obtain the finite element solution umk

hk
. The integer mk is determined by

the condition to be the smallest integer verifying:

�2
hk (umk

hk
) ≤ � (�2

hk (umk
hk

) + �2
hk ). (31)

(2) If �2
hk
≤  �2

hk
(umk

hk
) then mark a subset ℱ of ℰhk with minimal cardinality

such that
�2

hk
(umk

hk
,ℱ) ≥ � �2

hk
(umk

hk
). (32)

else find a setℳ⊂ Khk with minimal cardinality such that

�2
hk
(ℳ) ≥ � �2

hk
. (33)

and define ℱ to be the set of edges contained in at least one cell K ∈ℳ.

(3) Adapt the mesh : hk+1 := ℛloc(hk ,ℱ).
(4) Set k := k + 1 and go to step (1).
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Upper bounds

Lemma 7

(global upper bound) There exists a constant C1 > 0 depending only on
the minimum angle of Kh0 such that for the iterative solution um

h ∈ Vh, we
have

∣u − um
h ∣21,h ≤ C1

(
�2

h(um
h ) + �2

h

)
. (34)

Lemma 8

(local upper bound) There exist constants C4,C5 > 0 depending only on
the minimum angle of Kh0 such that the following holds. For any mesh
H ∈ ℋ and any local refinement h ∈ ℋ of H, let ℱ ⊂ ℰH be the set of refined
edges. The corresponding coarse iterative solution ul

H ∈ VH and fine-grid
solution uh ∈ Vh satisfy

∣uh − u l
H ∣21,h ≤ C4

(
�2

H(u l
H ,ℱ) + �2

H + � (�2
H(u l

H) + �2
H)
)
. (35)
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Lower bounds

Lemma 9

(global lower bounds) There exist constants C2,C3 > 0 depending only on
the minimum angle of Kh0 such that the following estimates hold for the
iterative solution um

h ∈ Vh:

�2
h(um

h ) ≤ C2 ∣u − um
h ∣21,h (36)

and
�2

h ≤ C3

(
∣u − um

h ∣21,h + osc2
h

)
. (37)

Lemma 10

(local lower bounds) There exist constants C6,C7 > 0 depending only on
the minimum angle of Kh0 such that for ℱ ⊂ ℰH , h = ℛloc(H,ℱ), there holds:

�2
H(u l

H ,ℱ) ≤ C6∣um
h − u l

H ∣21,h, (38)

Ifℳ⊂ KH is the set of refined cells, there holds:

�2
H(ℳ) ≤ C7

(
∣um

h − u l
H ∣21,h + �(�2

H(u l
H) + �2

h) + osc2
H(ℱ) + �(�2

h(um
h ) + �2

H)
)
.

(39)
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Quasi-orthogonality

Lemma 11

(quasi-orthogonality) Let h,H ∈ ℋ be two nested meshes andℳ⊂ KH be
the set of refined cells. Then there exists a constant C8 > 0 depending only
on the minimum angle in Kh0 such that

(∇h(u − um
h ),∇h(um

h − u l
H)) ≤

∣u − um
h ∣1,h

(
C8 �H(ℳ) +

√
�

(√
�2

h(um
h ) + �2

h +
√
�2

H(u l
H) + �2

H

))
,

(40)

(∇h(u − uh),∇h(uh − u l
H)) ≤ ∣u − uh∣1,h

(
C8 �H(ℳ) +

√
�
√
�2

H(u l
H) + �2

H

)
(41)

and
(∇h(u − uh),∇h(uh − uH)) ≤ C8 �H(ℳ)∣u − uh∣1,h. (42)
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Convergence of ANFEM

Theorem 12

Let {hk}k≥0 be a sequence of meshes generated by algorithm ANFEM and
let {umk

hk
}k≥0 be the corresponding sequence of finite element solutions.

Suppose that
0 < � ≤ C∗ �2, (43)

with a generic constant C∗ to be defined in the proof. Then there exist � > 0
and 0 < � < 1 such that for all k = 1, 2, . . .

e(hk+1) ≤ � e(hk ) (44)

with e(h) := ∣u − um
h ∣21,h + � �2

h.
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Quasi-optimality of ANFEM

Theorem 13

Suppose (u, f ) ∈ Ws. Let {hk}k≥0 be a sequence of meshes generated by
algorithm ANFEM and let {Vk}k≥0 and {umk

hk
}k≥0 be the corresponding

sequences of finite element spaces and solutions. Let
"k :=

√
∣u − umk

hk
∣21,hk

+ ��2
hk

. Assuming that the parameters , � and �
satisfy (61) and

 <
1− 3�C2

C2(C4 + 2C2
8 + 3�)

, � + � <
1− 3�C2

C2C4
− (1 +

2C2
8 + 3�
C4

). (45)

Then we have the following estimate on the complexity of the algorithm:
there exists a constant C such that for all k = 0, 1, 2, . . .

Nk ≤ C "
−1/s
k . (46)
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Convergence analysis of adaptive mixed finite element
methods
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H(div) approximations

The Raviart-Thomas space Vh ⊂ H(div; Ω) is defined as

Vh = {�h ∈ H(div; Ω); �h∣K ∈ P0(K )2 ⊕ xP0(K ), ∀ K ∈ Kh}.

Qh is the space of piecewise constant functions.
The discrete solution (�h, uh) ∈ Vh ×Qh approximating (∇u, u) in (1) is
defined by

⟨�h, �h⟩+ ⟨div �h, uh⟩+ ⟨div�h, vh⟩ = ⟨f , vh⟩ ∀(�h, vh) ∈ Vh ×Qh. (47)

In order to estimate the iteration error, we use an a posteriori error estimator
�2

h (�m
h ) which is supposed to satisfy the upper bound

∥�h − �m
h ∥2 ≤ Cit�

2
h (�m

h ). (48)

Next we define edge residuals for E ∈ ℰh and any given subset ℱ ⊆ ℰh

�h,E (�h) := h1/2
E ∥[�h ⋅ tE ]∥E , �h(�h,ℱ) :=

(∑
E∈ℱ

�2
h,E (�h)

)1/2

. (49)
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Algorithm AMFEM

(0) Choose parameters 0 < �, � < 1,  > 0, � > 0 and an initial mesh h0,
and set k = 0.

(1) Do mk iterations of the discrete system (47) to obtain �mk
hk

, mk is
determined by the condition to be the smallest integer verifying:

�2
hk (�

mk
hk

) ≤ ��2
hk (�

mk
hk

). (50)

(2) Compute the a posteriori error estimator �hk (�
mk
hk

) and the oscillation
term oschk .

(3) If osc2
hk
≤  �2

hk
(�

mk
hk

) then mark a set ℱ of ℰhk with minimal cardinality
such that

�2
hk
(�

mk
hk
,ℱ) ≥ � �2

hk
(�

mk
hk

). (51)

else find a setℳ⊂ Khk with minimal cardinality such that

osc2
hk
(ℳ) ≥ � osc2

hk
. (52)

and define ℱ to be the set of edges contained in at least one cell K ∈ℳ.
(4) Adapt the mesh : hk+1 := ℛloc(hk ,ℱ).
(5) Set k := k + 1 and go to step (1).
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Upper bounds

Lemma 14

(global upper bound) There exists a constant C1 > 0 depending only on
the minimum angle of h0 such that for the iterative solution �m

h ∈ Vh, we have

∥� − �m
h ∥2 ≤ C1

(
�2

h(�m
h ) + osc2

h

)
. (53)

Lemma 15

(local upper bound) There exist constants C3,C5 > 0 depending only on
the minimum angle of h0 such that the following holds. For any subset
ℱ ⊂ ℰH , h = ℛloc(H,ℱ), andℳ the set of refined cells, the iterative
solutions �l

H ∈ VH and �h ∈ Vh, we have

∥�h − �l
H∥2 ≤ C3

(
�2

H(�l
H ,ℱ) + osc2

H(ℳ)
)

+ ��2
H , (54)

and
#ℱ ≤ C5 (Nh − NH). (55)
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Lower bounds

Lemma 16

(global lower bounds) There exists a constant C2 > 0 depending only on
the minimum angle of h0 such that the iterative solution �l

H ∈ VH satisfies

�2
H(�l

H) ≤ C2 ∥� − �l
H∥2. (56)

Lemma 17

(local lower bounds) There exists a constant C4 > 0 depending only on the
minimum angle of h0 such that for ℱ ⊂ ℰH , h = ℛloc(H,ℱ) andℳ⊂ KH the
set of refined cells there holds:

�2
H(�l

H ,ℱ) ≤ C4

(
∥�m

h − �l
H∥2 + osc2

H(ℳ) + ��2
H(�l

H)
)
. (57)
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Quasi-orthogonality

Lemma 18

Let h,H ∈ ℋ be two nested meshes andℳ⊂ KH be the set of refined cells.
Then there exists a constant C6 > 0 depending only on the minimum angle
of h0 such that

⟨� − �m
h , �

m
h − �l

H⟩ ≤
√
��h(�m

h )∥�m
h − �l

H∥ (58)

+ ∥� − �m
h ∥
(

C6oscH(ℳ) +
√
�(�h(�m

h ) + �H(�l
H))
)
,

and
⟨� − �h, �h − �l

H⟩ ≤ ∥� − �h∥
(

C6oscH(ℳ) +
√
��H(�l

H)
)
. (59)

If we solve both of the discretized equations exactly on the meshes h and H,
then we have

⟨� − �h, �h − �H⟩ ≤ C6oscH(ℳ)∥� − �h∥. (60)
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Convergence of algorithm AMFEM

Theorem 19

Let {hk}k≥0 be a sequence of meshes generated by algorithm AMFEM and
let {�mk

hk
}k≥0 be the corresponding sequence of iterative finite element

solutions. Suppose that
0 < � ≤ C∗ �2, (61)

Then there exist � > 0 and � < 1 such that for all k = 1, 2, . . .

e(hk+1) ≤ � e(hk ) (62)

with
e(h) := ∥� − �m

h ∥2 + � osc2
h. (63)
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Quasi-optimality and error estimate of algorithm AMFEM

We define the approximation class

Ws :=
{

(�, f ) ∈ (H(div,Ω), L2(Ω)) : ∥(�, f )∥Ws < +∞
}
. (64)

with
∥(�, f )∥Ws := sup

N≥N0

Ns inf
h∈HN

(
∥� − �h∥+ �h

)
.

Theorem 20

Let {hk} be a sequence of meshes generated by algorithm AMFEMand
{�mk

hk
}k≥0 be the corresponding iterative FE solutions. Assuming

0 <  <
1

C2(C3 + 2C2
6 )
, � +

3�
C3

<
1

C2C3
− (1 +

2C2
6

C3
), (65)

then there exists a constant C such that

Nk ≤ C "
−1/s
k . (66)

In case of 2D, there exists k0 ≥ 1, such that for all k = k0, k0 + 1, . . ., we have

∥� − �mk
hk
∥2 + �osc2

k ≤ C(Nk − N0)−1. (67)
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Extensions and open problem

Adaptive mixed (conforming and nonconforming) FEM for the Stokes
problem (submitted).

Adaptive FEM for the optimal control problem (submitted).

Adaptive H(curl) FEM for Maxwell problem, based on the local MG
method [HiptmairZheng09] (in preparation).

Open problem: Adaptive hp FEM, exponential convergence rate?
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Journal of Computational Mathematics, accepted.

R. Becker, S. Mao, Z. Shi, A convergent adaptive nonconforming finite
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Thank you for your attention!
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