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Adaptive finite element methods (AFEM)

Outline

Adapive finite
element methods.
(AFEM)

Let hy be an initial triangulation and set k = 0.
@ SOLVE: Compute the solution uy of the discrete problem;

@ ESTIMATE: Compute an estimator for the error in terms of the discrete
solution ux and given data;

@ MARK: Use the estimator to mark a subset My (edges or cells) for
refinement.

@ REFINE: Refine the marked subset My to obtain the mesh A1,
increase k and go to step SOLVE.

@ Popular for more than 30 years, why?
@ How about the convergence and convergence rate of the error?
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Adaptive finite element methods (AFEM)

Outline
Convergence history of AFEM (residual-based a posteriori error estimator)

@ Babuska and Rheinboldt [1978] (1D)
@ Dorfler [1996] (2D): oscillation small enough

, @ Morin, Nochetto, and Siebert [2000] : mark oscillation in every step by
interior node property

@ Binev, Dahmen, and DeVore [2004]: complexity estimate (need
coarsening)

@ Stevenson [2007]: complexity estimate without coarsening

@ Cascon, Kreuzer, Nochetto, Siebert [2008]: without marking oscillation
and no interior node property
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Adaptive finite element methods (AFEM)
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Adapive finite
element methods.

gt Our contribution: joint with Roland Becker and Zhongci Shi

@ For adaptive conforming linear elements: introduce an adaptive
marking strategy and an adaptive stopping criterion for the iterative
solution of the discrete system

@ The obtained refinement will in general be dominated by the edge
" residuals

Convergence analysis and quasi-optimal complexity

Optimal error estimate in 2D

Extensions to adaptive mixed finite element methods

Extensions to adaptive nonconforming finite element methods
Extensions to adaptive finite element methods for Stokes problem
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Convergence analysis of adaptive conforming finite element
methods
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Adaptive conforming finite element methods
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el Model problem and linear approximations

For simplicity, we consider

—Au=f, inQ c R?, )
: u=0, on 99Q.
The Ritz projection u, € V) is defined by
(VUh, VVh) = (f7 Vh) Yv, € Vh, (2)

where Vj, is the standard linear conforming finite element space.
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Error indicators

We define the family of admissible meshes . For any h € H, the set of
interior edges is denoted by &, and the set of nodes by N,

Let w, be the set of cells joining a node z € Ny and m.,(f) := [ fdx/|w].
We define

0SC; 1= |wz| "2 ||f — 7, fllu,, 0SCH(P) := )~ 0sC2
zeP
1/2 OV
Je(vn) = |EI" I, ]HEaJh Vh, F) =) JE(vh).

EcF
We set for brevity oscy := 0sch(Ns) and Jn(Vi) := Ju(Vh, En)

Shipeng MAO

Oy O coarive
methods




Inexact solutions of the discrete problem

ot A posteriori error estimate for iteration errors
o @ Let uf be an iterative solution and ¢x(up') be an estimator satisfying
— |un — uf'[§ < CuCR(uR). (3)

@ A simple one for some iteration methods (CG, MG):

: Caup) = lupt" = up'ly. (4)

@ A posteriori estimate for CG: e.g., [StrakovsVohralik09],
[ArioliGeorgoulis09]

@ We also developed a practical one for MG:

k

Cn(uR) =Y lh-1 Rl (5)

j=1

where R;(V;) can be related to the residuals appearing in the multigrid
iteration.
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Adaptive algorithms

Outline

Algorithm 1: collective marking

@ Choose parameters 0 < 6, o« < 1 and an initial mesh hy, and set k =0

@ Do my iterations for the discrete system (2) to obtain u,, , My is
determined by:

Ch (Uk) < a (i (up*) + 0sCh ).
@ Mark a set F C &, with minimal cardinality such that

Jh (F) + 0sch, (F) > 0 (Ji, (up*) + 0Ch,).
@ Adapt the mesh : hiyq := Refine(hy, F)

@ Set k := k + 1 and go to the next step.
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Adaptive algorithms

Outine Algorithm 2: adaptive marking

@ Choose parameters 0 < 0, a,0 < 1,y > 0 and an initial mesh hy, and
= set k =0.

@ Do my iterations for the discrete system (2) to obtain u,’,';" , My is
determined by (6).

o If
osch, < 7, (),
mark a set F C &, with minimal cardinality such that
S (F) > 045, (upk), (7)
else find a set P C N, with minimal cardinality such that
0sCh, (P) > 0 0SC}, . (8)

@ Adapt the mesh : hiy1 := Refine(hy, F).

Shipeng MAO
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(AFEM)

Convergence
an:

Upper bounds

(upper bounds) Let h € H. There exists a constant C; > 0 depending only

on the minimum angle of hy such that for u, € V), the solution of (47) and
arbitrary wy € Vy

lu— whl§ < Ci(Ji(Wh) + 0SCh) + 2 |up — w5 9)
Suppose in addition that H € H and F C &y are such that h = Ric(H, F).

Letting P C Ny the set of nodes included in F and uy € Vi the discrete
solution, we have

lun — whl§ < Ci (JEI(WHa]:) + 05C(P) + |uw — WH|$) Vwy € Vi, (10)

and

#F < C3 (Nn— Ny). (11)

.
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(AFEM)

Convergence
analysis of

Lower bounds

(lower bounds) There exists a constant C, > 0 depending only on the
minimum angle of hy such that for all vy € Vi

J(vw) < Co (|Ju = vil? + 05hy) . (12)

There exists a constant C4 > 0 depending only on the minimum angle of hy
such that for F C En, h = Rioc(H, F) and arbitrary 6 > 0

SB(vh) < (14+6) B (vi)— 110

(13)

> S2(Vi, F)+Ca(141/8)|Va—VH|Z  VVh € Vi, vy €

Shipeng MAO

4




Outline

Convergence of Algorithm 1

Let {hk}«>0 be a sequence of meshes generated by Algorithm 1 and let

{u,’:;k tk>o0 be the corresponding sequence of finite element solutions.
Suppose that

0<a< C¢?

then there exist constants 51 > 0, 8> > 0, and p < 1 such that for all
k=1,2,...

€(hki1, Micy1) < p e(h, my),
where e(h, m) := |u — U3 + B1 0sC3 + Bo JE(U]).

(14)
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Optimal Marking cardinality and class of approximation

Assumption Let h¢, k = 0, ... nbe a sequence of locally refined meshes
created by the local mesh refinement algorithm, starting from the initial
mesh hg. Let Fx C &, k = 0,...n— 1 be the collection of all marked edges
in step k. Then there exists a mesh-independent constant C, such that

n—1

Ni, < Niy + Co > #Fk. (16)
k=0

(16) is known to be true for the newest vertex bisection algorithm, see
[BinevDahmenDeVore04] and [Stevenson08].
Next we define the approximation class

W= { (U 1) € (H(Q), L) I(u, Nllwe < +o0}. (17)
with

._ s _
Iy, H|lws == supON thJN(VJth|u vp|? +osch)
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(AFEM)
Convergence
an:

Quasi-optimality and error estimate of Algorithm 1

Let {h«}«>0 be a sequence of meshes generated by Algorithm 1 and let

{u,'}lk tk>0 be the corresponding sequence of finite element solutions.
Suppose that

0<a<C®0<0<0 <A1,

then we have the following estimate on the complexity of the algorithm:
Ne < Cep'e.

Furthermore, in case of 2D, there exists ko > 1, such that for all
k= ko, ko +1,..., we have

e(hk, M) < C (Nk — Nig) || ]I
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Convergence of Algorithm 2

Let {hk}«>0 be a sequence of meshes generated by Algorithm 2 and let

{u,'zlk tk>0 be the corresponding sequence of iterative finite element
solutions. Suppose that

0<a< C¢?

then there exist constants 31 > 0, 8> > 0, and p < 1 such that for all
k=1,2,...

e(hky1, Mky1) < pe(hx, my).

(21)

(22)
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Quasi-optimality and error estimate of Algorithm 2

Theorem 6

Let {h«}«>0 be a sequence of meshes generated by Algorithm 2 and let

{u,'}lk tk>0 be the corresponding sequence of FE solutions. Suppose
0<a<C®0<0<0" <1,0<~<7,
then we have the following estimate on the complexity of the algorithm:
Ne < Ce /e

Furthermore, in case of 2D, there exists ko > 1, such that for all
k= ko, ko +1,..., we have

e(hk, M) < C (N — Nig) || ]I

(23)

(24)

(25)
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Features of the results

@ Optimal convergence rate after a finite steps.

@ In the SOLVE step: CG, MG will be stopped by an adaptive stopping
criteria with \/a(Jn + 0scp), compared with a fixed stopping criterion
(e.g., 1078) in the usual way.

@ In the REFINE step: no interior node property, which admits almost all
the classical refine rules, e.g., newest vertex bisection, reg-green
-refinement, etc.

@ In Algorithm 2, the edge residuals alone dominate the error estimation
in most cases, which verifies the well known result in practice.
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(AFEM
Convergence
analysis of
adaptive
conforming finite:

element methods

Numerical experiment

@ We solve Poisson’s equation on the L-shaped domain with Dirichlet
boundary condition. The exact solution is u(r,8) = r*/*sin(%).

@ Based on the local multigrid algorithm developed by Chen and Wu [06],
which has optimal computational cost for discrete systems of PDE.

Shipeng MAO




Outline

Convergence
analysis of
adaptive
conforming finite:
element methods

n orming
finite element
methor
vergencs
analysis of
ptive mixed
finite element
met
Extel and
open problem

08

0.6

0.4

0.2




Outline

Convergence
analysis of
adaptive
conforming finite:
element methods

n orming
finite element
methor
vergencs
analysis of
ptive mixed
finite element
met
Extel and
open problem

0.

®
T

0.

>

0.4

0.2

0.2

0.4

0.6

0.8




Outline

Convergence
analysis of
adaptive
conforming finite:
element methods

vergencs
analysis of

ptive mixed
finite element
met
Extel and
open problem

Number of iterations of every step

20

o

_ =
a-

6
Number of elements




Outline

element meth
(AFEM
Convergence
analysis of

conforming finite:
element methods

f
nonconforming
finite
methor
analysis of

adaptive mix
finite element
methor

Extens nd
open problem

Energy norm error

.
5

? ! 10° 10°

10
Number of elements




Outline

Convergence
analysis of
adaptive
conforming finite:
element methods

vergencs
analysis of

ptive mixed
finite element
met
Extel and
open problem

Number of total iterations of every step

500

400

@
&
8

n
8
8

"
g
8

e

%

6
Number of elements



Outline

Convergence
analysis of
adaptive
conforming finite:
element methods

p ning
finite elemen
methor — '8 — matlab 7.1 solver
Convergenc —#— old stopping
analysis of X - new stopping
pive mixed
finite loment 0
mel a
8
Extonsions and %
open problem 250
g
3
5
o 40
E
5 a0
g
g

6
Number of elements



Outline

Convergence
analysis of
adaptive
conforming finite:
element methods

vergencs
analysis of

ptive mixed
finite element
met
Extel and
open problem

Total iteration time

— 8 —matlab 7.1 solver
—#— old stopping
X - new stopping

6
Number of elements



Convergence analysis of adaptive nonconforming finite
element methods
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Adaptive nonconforming finite element methods (ANFEM)

@ We develop a practical adaptive algorithm for linear nonconforming
finite element method.

@ |tis based on an adaptive marking strategy and an adaptive stopping
criteria for iterative solution.

@ We prove its convergence and optimal error estimate

@ The main difficulties are the proof of the quasi-orthogonality, local upper
and lower bounds of ANFEM.
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Nonconforming FE approximations

Let V,, denote the nonconforming P; finite element space (Crouzeix-Raviart
element over Ty, which is given by

Vh = {Vh S LZ(Q);VK S ]Ch, Vh|K S P1(K);VE S Eh,/[Vh]EdS = 0}7
E

here [vy]e stands for the jump of v, across E and vanishes when E C 99.
Let uy denote the solution of the discrete problem

Find up € V4, such that (26)
an(Un, vn) = (f, vn), ¥V Vh € Vp,
where an(un, vh) = ke, S VUV Vi dX.
We suppose that ¢2(ul") satisfies the following upper bound
lup — uf'|3 .0 < CiCh(UR). (27)

Set

(NE

2
I-lla=1 > I«

KeKh,

OTIVCTUCTICE QT GUaoT OPtTaNty OF cucpive
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Error estimators

Outline

We define edge residuals for E € &, and any subset F C &

e (Vi) - _h1/2 3Vh

[5s

EcF

1/2
s na(Va, F) = (Z U%,E(W:)) o (28)
£

together with volume residuals for K € K, and any subset M C K,

1/2
k= K" flok,  pn(M) : (Z uK> . (29)

KeMm
We next define an oscillation term by

1/2
osce := |we|"?||f — Twgfllowe, 0SCH(F) : <Zosc,:—) . (30)

EcF

We set for brevity ns(vs) := na(Vh, En), 05Ch := 0sCh(En) and wp = n(Kn)

Shipeng MAO
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Algorithm ANFEM

Outline
(0) Choose parameters 0 < 6,0 < 1,y > 0, @ > 0 and an initial mesh hy,
and set k = 0.
e (1) Do my iterations of the discrete system (26) with h replaced by hy to
iy obtain the finite element solution UZZK- The integer my is determined by
the condition to be the smallest integer verifying:
= Ch (Upk) < a (i (up) + 1) (31)

(2) o Ifyf, <~vnp (uyk)then mark a subset F of €, with minimal cardinality
such that

T, (Ups F) > 01 (uph). (32)
o else find a set M C Kp, with minimal cardinality such that
W (M) > o i . (33)
and define F to be the set of edges contained in at least one cell K € M.
(8) Adapt the mesh : hei 1 := Rioc(hk, F).
(4) Set k := k+ 1 and go to step (1).
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Upper bounds

Lemma 7

(global upper bound) There exists a constant C; > 0 depending only on
the minimum angle of K, such that for the iterative solution uj' € Vj, we
have

ju— U < Cr (nR(UR) + 1) - (34)

Lemma 8

<

(local upper bound) There exist constants C4, Cs > 0 depending only on
the minimum angle of Ky, such that the following holds. For any mesh

H € H and any local refinement h € H of H, let F C En be the set of refined
edges. The corresponding coarse iterative solution ul; € Vi and fine-grid
solution up € V, satisfy

[un = Ukl < Ca (v, F) + iy +a Grli(ub) + 48)) . (35)

4
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Lower bounds

Lemma 9

(global lower bounds) There exist constants C,, Cs > 0 depending only on
the minimum angle of ICp, such that the following estimates hold for the
iterative solution uf! € Vj:

na(up) < Colu—ufl 5 (36)

and
h < Ca (Ju— uffin+ 0sch) (37)

Lemma 10

(local lower bounds) There exist constants Cs, C; > 0 depending only on
the minimum angle of ICy, such that for F C £y, h = Riec(H, F), there holds:

iU, F) < Celup’ — uplf n, (38)
If M C Ky is the set of refined cells, there holds:

HE(M) < Cr (1UF = b o+ () + ) + 05G(F) + alnh(uf) + 1) ).
39
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outine Quasi-orthogonality

Lemma 11

e (quasi-orthogonality) Let h, H € H be two nested meshes and M C Ky be
- the set of refined cells. Then there exists a constant Cg > 0 depending only
on the minimum angle in KC, such that

- (Va(u — ul), Va(ull — uly)) <

lu—uf'l1.n (Cs pH(M) + Va (\/n,%(u?) + b+ \/nf,(U’H) + u%)) :

(40)

(Vh(u — un), Va(un — uty)) < |U— tn|1,n (Cs pH(M) + Vay/nZ(uy) + Hi)

and

(Va(u — un), Va(un — un)) < Cg uu(M)|u — Unl1 p- (42)
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Convergence of ANFEM

Theorem 12

Let {h«}k>0 be a sequence of meshes generated by algorithm ANFEM and

let {u,’::‘ tk>0 be the corresponding sequence of finite element solutions.
Suppose that

0<a<C ¢, (43)
with a generic constant C* to be defined in the proof. Then there exist 5 > 0
and0 < p < 1suchthatforallk =1,2,...

e(hii1) < pe(hx) (44)
with e(h) == |[u — uf'|3 » + B -
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Quasi-optimality of ANFEM

Theorem 13

Suppose (u, f) € W?. Let{hx}«>0 be a sequence of meshes generated by
algorithm ANFEM and let { Vi }«>0 and {u,’;Z“ tk>o0 be the corresponding
sequences of finite element spaces and solutions. Let

ek = \/ |u— u,’;lk % h, + Bus, - Assuming that the parameters v, 6 and o

satisfy (61) and

1-— 3002

< 1 —3an
7S Co(Co + 2C2 + 3a)’

2C% + 3a
C>Cy

a+6< C
4

-1+ ). (49)

Then we have the following estimate on the complexity of the algorithm:
there exists a constant C such that for all k = 0,1,2, . ..

Ne < Ce e, (46)

V.
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Convergence analysis of adaptive mixed finite element
methods
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rTEsE

H(dliv) approximations

The Raviart-Thomas space V, C H(div; Q) is defined as
Vi = {mn € H(div; Q); 7|k € Po(K)® @ xPy(K), ¥V K € Kn}.

Qy is the space of piecewise constant functions.
The discrete solution (on, un) € Vi x Qn approximating (Vu, u) in (1) is
defined by

<Uh,7'h> + <diVTh, Uh> + <diVGh, Vh> = <f, Vh> V(T/-,, Vh) S Vh X Qh. (47)

In order to estimate the iteration error, we use an a posteriori error estimator
¢2(c™M which is supposed to satisfy the upper bound

llon = oRII* < CuCh(oR). (48)
Next we define edge residuals for E € £, and any given subset 7 C &

1/2
ne(mn) = b 2||lm - tellle,  mn(mn F) = (Z 77121,E(7'h)> : (49)

EcF
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Algorithm AMFEM

Outline

(0) Choose parameters 0 < 0,0 <1,y > 0, @ > 0 and an initial mesh hy,
and set k = 0.

(1) Do my iterations of the discrete system (47) to obtain a,’,’;k, my is
determined by the condition to be the smallest integer verifying:

. G (o) < and, (o). (50)
: (2) Compute the a posteriori error estimator nnk(a,’,’zk) and the oscillation

term oscp, .
(8) o Ifosch < ~nf (op*) then mark a set F of €, with minimal cardinality
such that o m o m
Thy (o‘hkk,]:) > 977hk(0hkk)- (51)
o else find a set M C Kp, with minimal cardinality such that
0sc, (M) > o osch, . (52)
and define F to be the set of edges contained in at least one cell K € M.
(4) Adapt the mesh : hiy1 := Rioc(hk, F).
(5) Set k:= k+ 1 and go to step (1).
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Upper bounds

Lemma 14

(global upper bound) There exists a constant C; > 0 depending only on
the minimum angle of hy such that for the iterative solution o} € Vi, we have

lo = o I? < C1 (#E(F) + 0sch) - (53)

Lemma 15

| \

(local upper bound) There exist constants Cs, Cs > 0 depending only on
the minimum angle of hy such that the following holds. For any subset

F C En, h=Ric(H, F), and M the set of refined cells, the iterative
solutions oty € Vi and o, € Vi, we have

lon — ohll? < Cs (whloh, ) + 0sci(M) ) + arf, (54)

and

#F < Cs (Nh — NH). (55)
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Outine Lower bounds

Lemma 16

(global lower bounds) There exists a constant C, > 0 depending only on
the minimum angle of hy such that the iterative solution af., € Vy satisfies
ni(oh) < C2llo — onl®. (56)

methods
Ex

V.

Lemma 17

(local lower bounds) There exists a constant C4 > 0 depending only on the
minimum angle of hy such that for F C En, h = Ric(H, F) and M C Ky the
set of refined cells there holds:

nhots, F) < Ci (o — ohll* + oscy(M) + anfi(al)) . (67)

4
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Quasi-orthogonality

Let h, H € H be two nested meshes and M C Ky be the set of refined cells.

Then there exists a constant Cs > 0 depending only on the minimum angle
of hy such that

(o0 —ofon —awy < Van(omlon — ol (58)
+ o —of| (CsoscH(M) + Va(nn(or') + 77H(0'.{-I))) :

and
(o~ onon— oh) < llo = ol (Cooson(M) + Vanu(ol)) . (59)

If we solve both of the discretized equations exactly on the meshes h and H,
then we have

(0 — on,on — on) < Cgoscy(M)||lo — ol (60)

v
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Theorem 19

Convergence of algorithm AMFEM

Let {hk}«k>0 be a sequence of meshes generated by algorithm AMFEM and
let {a,’;;k }k>0 be the corresponding sequence of iterative finite element
solutions. Suppose that

0<a<C ¢, (61)
Then there exist 3 > 0 and p < 1 such that forallk =1,2,...
e(hi1) < pe(hx) (62)

with
e(h) := ||lo — off||* + B osch. (63)

4
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Quasi-optimality and error estimate of algorithm AMFEM

We define the approximation class

{(a f) € (H(div,Q), L2()) : [I(e, H)llws < +oo}.
with
o s _
I(:Hlhwe := sup N 0t (e —onll + ).

Theorem 20

Let {h«} be a sequence of meshes generated by algorithm AMFEMand
{ahk tk>o0 be the corresponding iterative FE solutions. Assuming

0< <% 9+3—a< L (1+2—CZ)
7 Co(Cs +2C2)’ Cs 2Cs | Cs

then there exists a constant C such that

N« < C 5;1/5
In case of 2D, there exists ko > 1, such that for all k = ko, ko + 1

llo = opel® + Bosck < C(Nk — No) ™.

., We have

(67)
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Extensions and open problem

@ Adaptive mixed (conforming and nonconforming) FEM for the Stokes
’ problem (submitted).

@ Adaptive FEM for the optimal control problem (submitted).

@ Adaptive H(curl) FEM for Maxwell problem, based on the local MG
method [HiptmairZheng09] (in preparation).

@ Open problem: Adaptive hp FEM, exponential convergence rate?
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Thank you for your attention!
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