FVM for the Two-fluid MHD Equations

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

ProDoc 2010, Disentis

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Table of contents

1 Introduction

- 2 Two-Fluid euqations
- 3 Finite Volume Methods
- 4 Numerical Results
- 5 Conclusions and Future Work

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Plasma Flow Models

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \nabla_{\vec{x}} f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} (\vec{E} + \vec{v} \times \vec{B}) \cdot \nabla_{\vec{v}} f_{\alpha} = C_{\alpha}$$

- Boltzmann equation based on statistical description.
- Describe the collective behavior of plasma species α .
- \vec{E} and \vec{B} are given by Maxwell's equations.
- C_{α} is collision operator.

Harish Kumar (with Siddhartha Mishra)

Plasma Flow Models

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \nabla_{\vec{x}} f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} (\vec{E} + \vec{v} \times \vec{B}) \cdot \nabla_{\vec{v}} f_{\alpha} = C_{\alpha}$$

- Boltzmann equation based on statistical description.
- Describe the collective behavior of plasma species α.
- \vec{E} and \vec{B} are given by Maxwell's equations.
- C_{α} is collision operator.
- $f_{\alpha}(\vec{x}, \vec{v}, t)$ depends on seven variables.
- Difficult to analyze and compute.

Moments of Boltzmann Equation

- Moments of the Boltzmann equation w.r.t velocity \vec{v} .
- Results in infinite chain of equations, need to truncate.
- Assumptions enforce the domain of validity.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Moments of Boltzmann Equation

- Moments of the Boltzmann equation w.r.t velocity \vec{v} .
- Results in infinite chain of equations, need to truncate.
- Assumptions enforce the domain of validity.
- First three moments with the assumption of local thermodynamical equilibrium, results in *Two-Fluid equations*.
- Ignoring viscous, resistive and thermal diffusion effect gives Ideal Two-Fluid equations.

Ideal Two-fluid equations: Flow equations

Zeroth moment yields Mass conservation

$$rac{\partial
ho_lpha}{\partial t} +
abla \cdot (
ho_lpha ec{m{v}}_lpha) = m{0},$$

with
$$\alpha \in \{i, e\}$$
.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Ideal Two-fluid equations: Flow equations

Zeroth moment yields Mass conservation

$$rac{\partial
ho_lpha}{\partial t} +
abla \cdot (
ho_lpha ec{ extbf{v}}_lpha) = extbf{0},$$

with $\alpha \in \{i, e\}$.

 First moments, written in conservation form results in Momentum conservation

$$rac{\partial(
ho_lphaec{v}_lpha)}{\partial t} +
abla \cdot \left(
ho_lphaec{v}_lphaec{v}_lpha^ op + p_lpha \mathbf{I}
ight) = rac{q_lpha}{m_lpha}
ho_lpha(ec{E} + ec{v}_lpha imes ec{B}).$$

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Ideal Two-fluid equations: Flow equations

Second moment give Energy conservation

$$rac{\partial E_{lpha}}{\partial t} +
abla \cdot ((E_{lpha} + p_{lpha}) ec{v}_{lpha}) = r_{lpha}
ho_{lpha} (ec{E} \cdot ec{v}_{lpha}).$$

Equation of state for ideal gas,

$${\it E}_lpha = rac{{\it p}_lpha}{\gamma-1} + rac{1}{2}
ho_lpha |ec{\it v}_lpha|^2$$

with $\gamma = \frac{5}{3}$ is gas constant.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Maxwell's Equation

- Closed with Perfectly Hyperbolic Maxwell's Equations (PHM).
- Allows approximate div free evolution of the magnetic field.
- Maxwell's Equation

$$\begin{aligned} \frac{\partial \vec{B}}{\partial t} + \nabla \times \vec{E} + \kappa \nabla \psi &= 0, \\ \frac{\partial \psi}{\partial t} + \kappa c^2 \nabla \cdot \vec{B} &= 0, \\ \frac{\partial \vec{E}}{\partial t} - c^2 \nabla \times \vec{B} + \xi c^2 \nabla \phi &= -\frac{1}{\varepsilon_0} \left(r_i \rho_i \vec{v}_i + r_e \rho_e \vec{v}_e \right), \\ \frac{\partial \phi}{\partial t} + \xi \nabla \cdot \vec{E} &= \frac{\xi}{\varepsilon_0} (r_i \rho_i + r_e \rho_e) \end{aligned}$$

Harish Kumar (with Siddhartha Mishra)

Application of Plasma Flows

- Geospace Environment modeling(GEM)-Magnetic Reconnection
- Electric propulsion-Hall effect thrusters.
- Control fusion-Plasma confinement.
- Circuit Breakers.
- Waste management.

Harish Kumar (with Siddhartha Mishra)

Ion-Electron flux

$$ec{\mathsf{F}}_lpha(ec{\mathsf{U}}) = egin{cases}
ho_lphaec{v}_lpha\
ho_lphaec{v}_lphaec{v}_lpha^{ op}+
ho_lpha ec{\mathsf{I}},\ (E_lpha+
ho_lpha)ec{v}_lpha\
ho_lpha$$

- Nonlinear Euler flux.
- Maxwell's Flux is Linear.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

・ロト ・日子・ ・ ヨト・ Seminar for Applied Mathematics, ETH Zurich, Switzerland.

э

	Two-Fluid euqations	Finite Volume Methods	Numerical Results	Conclusions and Future Work
Flux				

Ion-Electron flux

$$ec{f F}_lpha(ec{f U}) = egin{cases}
ho_lphaec{v}_lpha\
ho_lphaec{v}_lphaec{v}_lpha^{ op}+
ho_lphaf I,\ (E_lpha+
ho_lpha)ec{v}_lpha\
ho_lpha$$

- Nonlinear Euler flux.
- Maxwell's Flux is Linear.
- Flux parts are completely split and Eqns. are coupled through source terms only.

Lemma

Let s_i, s_e be defined as fluid entropies,

$$s_i = \log p_i - \gamma \log \rho_i$$
 $s_e = \log p_e - \gamma \log \rho_e$

Then, smooth solutions of TF Eqns. in one dimension satisfy,

$$(\rho_i s_i)_t + (\rho v_i^x s_i)_x = 0, \quad (\rho_e s_e)_t + (\rho_e v_e^x s_e)_x = 0$$

Harish Kumar (with Siddhartha Mishra)

Proof.

A simple calculation shows,

$$\rho_{i_t} + \vec{v}_i^x \rho_i + \rho_i (\vec{v}_i^x)_x = 0,$$

$$\rho_{i_t} + \gamma \rho_i (\vec{v}_i^x)_x + \vec{v}_i^x \rho_{i_x} = 0,$$

Combining,

$$(s_i)_t + \vec{v}_i^x(s_i)_x = 0,$$

Adding mass conservation equation yields the required equality.

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

FVM for the Two-fluid MHD Equations

Remark

As is standard for conservation laws, the entropy identity for smooth solutions results in the following entropy inequality (in weak form) for weak solutions,

 $(\rho_i s_i)_t + (\rho_i \vec{v}_i^x s_i)_x \leq 0, \quad (\rho_e s_e)_t + (\rho_e \vec{v}_e^x s_e)_x \leq 0$

Harish Kumar (with Siddhartha Mishra)

Remark

As is standard for conservation laws, the entropy identity for smooth solutions results in the following entropy inequality (in weak form) for weak solutions,

$$(\rho_i s_i)_t + (\rho_i \vec{v}_i^x s_i)_x \leq 0, \quad (\rho_e s_e)_t + (\rho_e \vec{v}_e^x s_e)_x \leq 0$$

Remark

The above estimates are trivial to generalize to multi-dimensions. The resulting entropy identity is

$$(\rho_i s_i)_t + \operatorname{div}(\rho_i \vec{v}_i s_i) = 0, \quad (\rho_e s_e)_t + \operatorname{div}(\rho_e \vec{v}_e s_e) = 0$$

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Energy estimate

Lemma

Assume that there exists constants $\rho_{\alpha,\min}, \rho_{\alpha,\max}, p_{\alpha,\min}$ such that

$$\rho_{\alpha,\min} \le \rho_{\alpha} \le \rho_{\alpha,\max}, \quad p_{\alpha} \ge p_{\alpha,\min},$$

then we have the following estimate,

$$\int_{\mathbb{R}} \|\rho_{\alpha}\|^2 + \|\rho_{\alpha}\vec{v}_{\alpha}\|^2 + \|E_{\alpha}\|^2 dx \leq C \int_{\mathbb{R}} \rho_{\alpha}s_{\alpha}dx + C_1,$$

for some constants C, C_1 depending on the above parameters.

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Energy estimate

Lemma

Define the electro-magnetic energy as,

$$E_{EM} = \frac{\|\vec{B}\|^2 + \|\phi\|^2}{2} + \frac{\|\vec{E}\|^2 + \|\psi\|^2}{2c^2},$$

then we have the following global estimate,

$$\frac{d}{dt}\int_{\mathbb{R}}\mathsf{E}_{\mathsf{EM}}dx\leq C_{2}\left(\int_{\mathbb{R}}\mathsf{E}_{\mathsf{EM}}dx+\int_{\mathbb{R}}(\rho_{i}s_{i}+\rho_{e}s_{e})dx\right)+C_{3},$$

where s, \bar{s} are the entropies and C_2, C_3 are constants.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Source term energy

Lemma

Define energy function,

$$E_s = \frac{\rho_i \vec{v}_i^2 + \rho_e \vec{v}_e^2 + \varepsilon_0 \vec{E}^2}{2}.$$

If
$$\vec{U}$$
 is solutions of

$$\frac{d\vec{\mathbf{U}}}{dt} = \mathbf{S}(\vec{\mathbf{U}})$$

then,

$$\frac{dE_s}{dt} = 0$$

i.e. energy is conserved. Here **S** is source of two-fluid equation.

 Harish Kumar (with Siddhartha Mishra)
 Seminar for Applied Mathematics, ETH Zurich, Switzerland.

 FVM for the Two-fluid MHD Equations
 15/51

→ @ ▶ → 注 ▶ → 注 ▶

Source Term

Define,

$$ec{\mathbf{V}} = (ec{v}_i, ec{v}_e, ec{E})^ op$$

then

$$\frac{d\vec{\mathbf{V}}}{dt} = \mathbf{S}_{\vec{\mathbf{V}}}(\vec{\mathbf{V}})$$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

16/51

Source Term

Define. $\vec{\mathbf{V}} = (\vec{v}_i, \vec{v}_e, \vec{E})^\top$ then $\frac{d\vec{\mathbf{V}}}{d\vec{\mathbf{V}}} = \mathbf{S}_{\vec{\mathbf{V}}}(\vec{\mathbf{V}})$ with $\mathbf{S}(\vec{\mathbf{V}}) = \begin{cases} r_i(\vec{E} + \vec{v}_i \times \vec{B}), \\ r_e(\vec{E} + \vec{v}_e \times \vec{B}), \\ -\frac{1}{\varepsilon_0} \left(r_i \rho_i \vec{v}_i + r_e \rho_e \vec{v}_e \right). \end{cases}$

Harish Kumar (with Siddhartha Mishra)

▲ @ ▶ < ∃ ▶</p> Seminar for Applied Mathematics, ETH Zurich, Switzerland

Source term eigenvalues

First three eigenvalues are,

$$0, \pm i\omega_p$$

where

$$\omega_p^2 = \omega_{pi}^2 + \omega_{pe}^2$$

and

$$\omega_{plpha} = \sqrt{rac{n_lpha q_lpha^2}{\epsilon_0 m_lpha}}, \qquad lpha \in \{i, e\}$$

- All other eigenvalues are imaginary.
- Source terms are oscillatory in nature.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Non-Dimensional equations

- Number density n_0 , Temperature or Pressure $(P_0 = n_0 T_0)$.
- Length scale x_0 , Magnetic field B_0 .

Harish Kumar (with Siddhartha Mishra)

Non-Dimensional equations

- Number density n_0 , Temperature or Pressure $(P_0 = n_0 T_0)$.
- Length scale x_0 , Magnetic field B_0 .

• Velocity
$$V_0 = \sqrt{\frac{P_0}{\rho_0}}$$
,

• Electric field
$$E_0 = V_0 B_0$$
.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Non-Dimensional equations

Ion

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \vec{v}_i) &= 0, \\ \frac{\partial \rho_i \vec{v}_i}{\partial t} + \nabla \cdot (\vec{v}_i \vec{v}_i^\top + p_i \mathbf{I}) &= \frac{1}{\hat{r}_g} \rho_i (\vec{E} + \vec{v}_i \times \vec{B}), \\ \frac{\partial E_i}{\partial t} + \nabla \cdot ((E_i + p_i) \vec{v}_i) &= \frac{1}{\hat{r}_g} \rho_i (\vec{v}_i \cdot \vec{E}) \end{aligned}$$

Electrons

$$\begin{aligned} \frac{\partial \rho_e}{\partial t} + \nabla \cdot (\rho_e \vec{v}_e) &= 0, \\ \frac{\partial \rho_e \vec{v}_e}{\partial t} + \nabla \cdot \left(\vec{v}_e \vec{v}_e^\top + \rho_e \mathbf{I} \right) &= -\frac{m_i}{m_e} \frac{1}{\hat{r}_g} \rho_e (\vec{E} + \vec{v}_e \times \vec{B}), \\ \frac{\partial E_e}{\partial t} + \nabla \cdot ((E_e + \rho_e) \vec{v}_e) &= -\frac{m_i}{m_e} \frac{1}{\hat{r}_g} \rho_e (\vec{v}_e \cdot \vec{E}) \end{aligned}$$

Harish Kumar (with Siddhartha Mishra)

・ロッ ・回 ・ ・ ヨッ ・ Seminar for Applied Mathematics, ETH Zurich, Switzerland.

FVM for the Two-fluid MHD Equations

Maxwell's Equation

Maxwell's Equation

$$\begin{aligned} \frac{\partial \vec{B}}{\partial t} + \nabla \times \vec{E} + \kappa \nabla \psi &= 0, \\ \frac{\partial \psi}{\partial t} + \kappa \hat{c}^2 \nabla \cdot \vec{B} &= 0, \\ \frac{\partial \vec{E}}{\partial t} - \hat{c}^2 \nabla \times \vec{B} + \xi \hat{c}^2 \nabla \phi &= -\frac{m_i}{\hat{\lambda}_D^2 \hat{r}_g} \left(r_i \rho_i \vec{v}_i + r_e \rho_e \vec{v}_e \right), \\ \frac{\partial \phi}{\partial t} + \xi \nabla \cdot \vec{E} &= \frac{\xi m_i}{\hat{\lambda}_D^2 \hat{r}_g} (r_i \rho_i + r_e \rho_e). \end{aligned}$$

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

<ロ> <同> <同> <同> < 同>

FVM for the Two-fluid MHD Equations

э

Plasma Paramters

< □ ▷ < 圕 ▷ < 클 ▷ < 클 ▷ < 클 ▷ ○ Q (Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Harish Kumar (with Siddhartha Mishra)

Plasma Paramters

Remark

When Larmor radius $\hat{r}_g \rightarrow 0$ TF model approach the MHD limit. SImilarly for $\hat{r}_g \rightarrow \infty$ TF model reduce to simple flow equations for ions and electrons. TF equations caputers the intermediate physics of these two limits.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Finite Volume methods

• Key difficulty for FVMs of TF Eqns. is stiff source terms.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Finite Volume methods

- Key difficulty for FVMs of TF Eqns. is stiff source terms.
- Semi-discrete FVM in 1D,

$$\frac{d\vec{\mathbf{U}}_i}{dt} = -\frac{\left(\vec{\mathbf{F}}_{i+\frac{1}{2}} - \vec{\mathbf{F}}_{i-\frac{1}{2}}\right)}{\Delta x} + S(\vec{\mathbf{U}}_i).$$

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Image: A math a math

Numerical Flux

- Flux has split structure, so we use Euler and Maxwell approximate Riemann solvers.
- Riemann solvers used are Lax-Friedrich, Rusanov, HLLE, HLLE4, HLLE6 and Roe.
- For second order space discretization limiter are used: MinMod, MC, Superbee.

Harish Kumar (with Siddhartha Mishra)

Theorem (Tadmor (1987) Math. Comp.)

Consider a one dimensional system of conservation laws with entropy $\mathbf{E}(\vec{\mathbf{U}})$ and entropy variable $\vec{\mathbf{V}} = \partial_{\vec{\mathbf{U}}}\mathbf{E}$, entropy flux \mathbf{Q} , and entropy potential $\chi = (\vec{\mathbf{V}}, \vec{\mathbf{F}}) - \mathbf{Q}$. Let a finite difference scheme with consistent flux satisfying,

$$([\vec{\mathbf{V}}_{i+\frac{1}{2}}], \vec{\mathbf{F}}_{i+\frac{1}{2}}^*) = [\chi_{i+\frac{1}{2}}]$$

then scheme with this numerical flux satisfy discrete entropy equality and scheme is entropy conservative.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

For Linear Maxwell flux part, entropy flux is a simple average. For Euler entropy conservative flux is derived by Roe (Hyp) 2006),

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

< 🗇 > < Seminar for Applied Mathematics, ETH Zurich, Switzerland,

- For Linear Maxwell flux part, entropy flux is a simple average.
- For Euler entropy conservative flux is derived by Roe (Hyp 2006),
- At shocks entropy dissipates.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

- For Linear Maxwell flux part, entropy flux is a simple average.
- For Euler entropy conservative flux is derived by Roe (Hyp 2006),
- At shocks entropy dissipates.
- Entropy stability using diffusion operator,

$$\vec{\mathbf{F}}_{i+\frac{1}{2}} = \vec{\mathbf{F}}_{i+\frac{1}{2}}^* - \frac{1}{2}R_{i+\frac{1}{2}}|\Lambda_{i+\frac{1}{2}}|R_{i+\frac{1}{2}}^\top[\vec{\mathbf{V}}_{i+\frac{1}{2}}]$$

We use Roe and Rusanov diffusion operators.

Harish Kumar (with Siddhartha Mishra)

Semi-discrete system,

$$\frac{d\vec{\mathbf{U}}^n}{dt} = L(\vec{\mathbf{U}}^n) + S(\vec{\mathbf{U}}^n).$$

First order Euler,

$$\vec{\mathbf{U}}^{n+1} = \vec{\mathbf{U}}^n + (\Delta t)(L(\vec{\mathbf{U}}^n) + S(\vec{\mathbf{U}}^n)).$$

TVD-RK¹ for second and third order time stepping.

Standard RK4 for the fourth order

¹S. Gottlieb, C. W. Shu, E. Tadmor (2001)

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Implicit Scheme

Semi-discrete system,

$$\frac{d\vec{\mathbf{U}}^n}{dt} = L(\vec{\mathbf{U}}^n) + S(\vec{\mathbf{U}}^{n+1}).$$

First order scheme,

$$\vec{\mathbf{U}}^{n+1} = \vec{\mathbf{U}}^n + (\Delta t)(L(\vec{\mathbf{U}}^n) + S(\vec{\mathbf{U}}^{n+1})).$$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

A B > A B >

Implicit Scheme

Semi-discrete system,

$$\frac{d\vec{\mathbf{U}}^n}{dt} = L(\vec{\mathbf{U}}^n) + S(\vec{\mathbf{U}}^{n+1}).$$

First order scheme,

$$\vec{\mathbf{U}}^{n+1} = \vec{\mathbf{U}}^n + (\Delta t)(L(\vec{\mathbf{U}}^n) + S(\vec{\mathbf{U}}^{n+1})).$$

So,

$$\begin{aligned} \rho_{\alpha}^{n+1} &= \rho_{\alpha}^{n} + (\Delta t) L(\vec{\mathbf{U}}^{n})_{\rho_{\alpha}}, \\ \vec{B}^{n+1} &= \vec{B}^{n} + (\Delta t) L(\vec{\mathbf{U}}^{n})_{\vec{B}}, \\ \psi^{n+1} &= \psi^{n} + (\Delta t) L(\vec{\mathbf{U}}^{n})_{\psi}. \end{aligned}$$

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations Seminar for Applied Mathematics, ETH Zurich, Switzerland.

<ロ> <同> <同> <同> < 同>

э

Numerical Results

Implicit Scheme

Define

$$\vec{\mathbf{V}} = (\rho_i \vec{v}_i, \rho_e \vec{v}_e, \vec{E})^\top,$$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · · ○
Seminar for Applied Mathematics, ETH Zurich, Switzerland.

28/51

Numerical Results

Implicit Scheme

Define

$$\vec{\mathbf{V}} = (\rho_i \vec{v}_i, \rho_e \vec{v}_e, \vec{E})^\top,$$

then,

$$\frac{\vec{\mathbf{V}}^{n+1}-\vec{\mathbf{V}}^n}{\Delta t}=L(\vec{\mathbf{U}}^n)_{\vec{\mathbf{V}}}+\mathbf{A}\vec{\mathbf{V}}^{n+1}$$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < 少へ(Seminar for Applied Mathematics, ETH Zurich, Switzerland.

28/51

Implicit Scheme

Define

$$\vec{\mathbf{V}} = (\rho_i \vec{v}_i, \rho_e \vec{v}_e, \vec{E})^\top,$$

then,

$$\frac{\vec{\mathbf{V}}^{n+1}-\vec{\mathbf{V}}^n}{\Delta t}=L(\vec{\mathbf{U}}^n)_{\vec{\mathbf{V}}}+\mathbf{A}\vec{\mathbf{V}}^{n+1}$$

Finally,

$$\vec{\mathbf{V}}^{n+1} = \left(\mathbf{I} - (\Delta t)\mathbf{A}(\vec{\mathbf{U}}^{n+1})\right)^{(-1)} (\vec{\mathbf{V}}^n + (\Delta t)L(\vec{\mathbf{U}}^n)_{\vec{\mathbf{V}}}),$$

• Update E_e, E_i and ϕ at t^{n+1} .

Harish Kumar (with Siddhartha Mishra)

・ロッ ・回 ・ ・ ヨッ ・ Seminar for Applied Mathematics, ETH Zurich, Switzerland.

FVM for the Two-fluid MHD Equations

э

Implicit Scheme

Define

$$\vec{\mathbf{V}} = (\rho_i \vec{v}_i, \rho_e \vec{v}_e, \vec{E})^\top,$$

then,

$$\frac{\vec{\mathbf{V}}^{n+1}-\vec{\mathbf{V}}^n}{\Delta t}=L(\vec{\mathbf{U}}^n)_{\vec{\mathbf{V}}}+\mathbf{A}\vec{\mathbf{V}}^{n+1}$$

Finally,

$$\vec{\mathbf{V}}^{n+1} = \left(\mathbf{I} - (\Delta t)\mathbf{A}(\vec{\mathbf{U}}^{n+1})\right)^{(-1)} (\vec{\mathbf{V}}^n + (\Delta t)L(\vec{\mathbf{U}}^n)_{\vec{\mathbf{V}}}),$$

- Update E_e, E_i and ϕ at t^{n+1} .
- Second and third order TVD-time stepping with each Euler step replaces by first order update.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Implicit Scheme: Matrix $\mathbf{A}(\vec{\mathbf{U}}^{n+1})$

$$\begin{bmatrix} 0 & \frac{B^{z,n+1}}{\hat{l}_g} & -\frac{B^{y,n+1}}{\hat{l}_g} & 0 & 0 & 0 & \frac{\rho_i^{n+1}}{\hat{l}_g} & 0 & 0 \\ -\frac{B^{z,n+1}}{\hat{l}_g} & 0 & \frac{B^{x,n+1}}{\hat{l}_g} & 0 & 0 & 0 & 0 & 0 & \frac{\rho_i^{n+1}}{\hat{l}_g} & 0 \\ \frac{B^{y,n+1}}{\hat{l}_g} & -\frac{B^{x,n+1}}{\hat{l}_g} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\rho_i^{n+1}}{\hat{l}_g} \\ 0 & 0 & 0 & 0 & \frac{B^{z,n+1}}{\hat{l}_{1g}} & -\frac{B^{y,n+1}}{\hat{l}_{1g}} & \frac{\rho_e^{n+1}}{\hat{l}_{1g}} & 0 \\ 0 & 0 & 0 & 0 & \frac{B^{z,n+1}}{\hat{l}_{1g}} & 0 & \frac{B^{x,n+1}}{\hat{l}_{1g}} & 0 & \frac{\rho_e^{n+1}}{\hat{l}_{1g}} & 0 \\ 0 & 0 & 0 & 0 & -\frac{B^{z,n+1}}{\hat{l}_{1g}} & 0 & \frac{B^{x,n+1}}{\hat{l}_{1g}} & 0 & 0 & \frac{\rho_e^{n+1}}{\hat{l}_{1g}} & 0 \\ 0 & 0 & 0 & \frac{B^{y,n+1}}{\hat{l}_{1g}} & -\frac{B^{x,n+1}}{\hat{l}_{1g}} & 0 & 0 & \frac{\rho_e^{n+1}}{\hat{l}_{1g}} & 0 \\ 0 & 0 & 0 & \frac{-r_e}{K} & 0 & 0 & 0 & 0 \end{bmatrix}$$
Here $\hat{r}_{1g} = -\frac{m_e}{m_i}\hat{r}_g$ and $K = \frac{\hat{\lambda}_D^2\hat{r}_g}{m}$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

< 17 →

∃ >

Code Status

- TF FVM Code is developed by using ALSVID MHD code(CMA Oslo).
- Written in C++ with python interface.
- 3D cartesian mesh.
- Parallel version uses MPI.
- MATLAB interface is added for visualization.

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Convergence Rates: Forced Solution

- Density $\rho_{\alpha} = 2 + \sin(2\pi x)$
- $\vec{v}_{\alpha} = 1.0, p_{\alpha} = 1.0$
- Mass Ratio $\frac{m_e}{m_i} = \frac{1}{2}$.
- $B^{y} = \sin(2\pi x), E^{z} = -\sin(2\pi x)$
- Periodic boundary conditions.
- Added source term for Exact solution to be advection of density profiles.

Harish Kumar (with Siddhartha Mishra)

Image: Image:

Convergence Rates: Forced Solution

Figure: Error plots for smooth solutions with 2nd order methods

 Harish Kumar (with Siddhartha Mishra)
 Seminar for Applied Mathematics, ETH Zurich, Switzerland.

 FVM for the Two-fluid MHD Equations
 32/51

Soliton Propagation:Initial Condition

- Ion density $\rho_i = (1.0 + \exp(-25.0|x L/3.0|))$ with L = 12.0.
- Mass Ratio $\frac{m_e}{m_i} = \frac{1}{25}$.
- Pressure $p_e = 5.0 n_e$ and $p_i = \frac{p_e}{100}$.

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD <u>Equations</u>

Soliton Propagation:Initial Condition

- Ion density $\rho_i = (1.0 + \exp(-25.0|x L/3.0|))$ with L = 12.0.
- Mass Ratio $\frac{m_e}{m_i} = \frac{1}{25}$.
- Pressure $p_e = 5.0 n_e$ and $p_i = \frac{p_e}{100}$.
- Reference light speed $\hat{c} = 10.0$, Reference Length = 100.0.
- Debye Length 1.0, Larmor Radius =0.01.
- Periodic boundary conditions.

Ref: Baboolal, S. (2001), Hakim A.(2006)

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Numerical Results

Conclusions and Future Work

Soliton Propagation: HLLE4 with MinMod

Comparison of time discretizations with 5000 cells

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Soliton Propagation: Time Comparison table

Cells	o2exp	o3exp	o4exp	o2imp	o3imp
500	10.65	15.96	21.82	3.15	5.32
1000	21.25	31.52	44.09	12.36	18.58
2000	46.12	69.68	95.29	49.71	75.01
4000	185.05	277.53	396.77	200.46	299.41

Table: Time comparison of the schemes

Harish Kumar (with Siddhartha Mishra)

Soliton Propagation: Comparison of Solvers

Figure: Solution at t = 5.0 for explicit schemes.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Numerical Results

Conclusions and Future Work

Soliton Propagation: Comparison of Solvers

Figure: Solution at t = 5.0 for explicit schemes (zoom)

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Soliton Propagation: Comparison of Solvers

Figure: Solution at t = 5.0 for implicit scheme.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations Seminar for Applied Mathematics, ETH Zurich, Switzerland.

38/51

Numerical Results

Conclusions and Future Work

Soliton Propagation: Comparison of Solvers

Figure: Solution at t = 5.0 for implicit schemes.(zoom)

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Numerical Results

Brio-Wu:Initial Condition

$$\vec{\mathbf{U}}_{left} = \begin{cases} \rho_i = 1.0 \\ p_i = 5 \times 10^{-5} \\ \rho_e = 1.0 \frac{m_e}{m_i} \\ p_e = 5 \times 10^{-5} \\ B_x = 0.75 \\ B_y = 1.0 \end{cases}$$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

・ロッ ・回 ・ ・ ヨッ ・ Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Brio-Wu:Initial Condition

$$\vec{\mathbf{U}}_{left} = \begin{cases} \rho_i = 1.0 \\ p_i = 5 \times 10^{-5} \\ \rho_e = 1.0 \frac{m_e}{m_i} \\ p_e = 5 \times 10^{-5} \\ B_x = 0.75 \\ B_y = 1.0 \end{cases} \quad \vec{\mathbf{U}}_{Right}$$

$$\vec{\mathbf{J}}_{Right} = \begin{cases} \rho_i = 0.125 \\ p_i = 5 \times 10^{-6} \\ \rho_e = 0.125 \frac{m_e}{m_i} \\ p_e = 5 \times 10^{-6} \\ B_x = 0.75 \\ B_y = -1.0 \end{cases}$$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

・ロッ ・回 ・ ・ ヨッ ・ Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Brio-Wu:Initial Condition

$$\vec{\mathbf{U}}_{left} = \begin{cases} \rho_i = 1.0 \\ p_i = 5 \times 10^{-5} \\ \rho_e = 1.0 \frac{m_e}{m_i} \\ p_e = 5 \times 10^{-5} \\ B_x = 0.75 \\ B_y = 1.0 \end{cases}$$

$$\vec{\mathbf{U}}_{Right} = \begin{cases} \rho_i = 0.125 \\ p_i = 5 \times 10^{-6} \\ \rho_e = 0.125 \frac{m_e}{m_i} \\ p_e = 5 \times 10^{-6} \\ B_x = 0.75 \\ B_y = -1.0 \end{cases}$$

- Mass Ratio $\frac{m_e}{m_i} = \frac{1}{1832.6}$
- Pressure $p_0 = 10^{-4}$
- Light speed $\hat{c} = 100$.
- Debye Length 0.01

Ref: Shumlak, U.(2003), Loverich J.(2005), Hakim A.(2006)

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Brio-Wu:Solution with $\hat{r}_g = 50.0$

Figure: Comparison of o2exp and o2imp with 20000 cells

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Brio-Wu:Solution with $\hat{r}_g = 50.0$

Figure: Comparison of o2exp and o2imp with 20000 cells

Time: o2exp 16073.35 sec vs o2imp 17482.41 sec

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Brio-Wu:Solution with $\hat{r}_g = 0.005$

Figure: Comparison of o2exp and o2imp with 20000 cells

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Brio-Wu:Solution with $\hat{r}_g = 0.005$

Figure: Comparison of o2exp and o2imp with 20000 cells

Time: o2exp 27377.6 sec vs o2imp 13613.042 sec

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Brio-Wu:Solution with $\hat{r}_g = 10.0$

Figure: Comparison of Rus3 with ES-Rus with 1000 cells

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Brio-Wu:Solution with $\hat{r}_g = 0.01$

Figure: Comparison of Rus3 with ES-Rus with 10000 cells

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

Magnetic Reconnection:Initial Conditions

- Domain $D = [-L_x/2, L_x/2] \times [-L_y/2, L_y/2]$ with $Lx = 8\pi$ and $L_y = 4\pi$.
- Number densities $n = n_e = n_i = (\frac{1}{5} + \operatorname{sech}^2(\frac{y}{\lambda}))$, with $\lambda = 0.5$.
- $\vec{B} = B_0 \tanh\left(\frac{y}{\lambda}\right) e_x$, with $B_0 = 0.1$
- $\vec{J}_e = -\frac{B_0}{\lambda} sech^2\left(\frac{y}{\lambda}\right)$

•
$$p_e = \frac{B_0}{12}n(y)$$
 and $p_i = 5.0p_e$.

• Magnetic perturbation, $\delta \vec{B} = \vec{e_z} \times \nabla \chi$ with $\chi = \chi_0 \cos(\frac{2\pi x}{L_x}) \cos\frac{\pi y}{L_y}$ and $\chi_0 = \frac{B_0}{10.0}$

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

・ 同 ト ・ ヨ ト ・ ヨ ト

Magnetic Reconnection:Non-Dimensional Variables

- $\bullet B_0 = 0.1, p_0 = 0.01, V_0 = 0.1.$
- Debye Length 0.1
- Larmor Radius 1.0, Light speed $\hat{c} = 10.0$.
- Boundary condition: Periodic in x-direction. Conductive in y-direction.

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations

Magnetic Reconnection: $|J_z|$ at t = 25.0

Figure: O3exp on 800×400 mesh

Harish Kumar (with Siddhartha Mishra)

Seminar for Applied Mathematics, ETH Zurich, Switzerland.

Magnetic Reconnection

Figure: Reconnection Flux vs time

Harish Kumar (with Siddhartha Mishra) FVM for the Two-fluid MHD Equations Seminar for Applied Mathematics, ETH Zurich, Switzerland.

_ →

Conclusions

- Presented various entropy and energy estimates for TF eqns..
- Time step constraint imposed by stiff source is overcome by implicit scheme.
- For non-stiff problems both schemes are comparable.
- Developed entropy stable numerical scheme for TF.

Future Work

- Higher order entropy stable discretization.
- Further analysis of the time step constraint imposed by stiff source.
- Implicit time stepping for Maxwell part.
- Compute Magnetic Reconnection.

Conclusions and Future Work

Future Work

THANK YOU

Harish Kumar (with Siddhartha Mishra)

FVM for the Two-fluid MHD Equations

・ロッ ・回 ・ ・ ヨッ ・ Seminar for Applied Mathematics, ETH Zurich, Switzerland.

-