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Plasma Flow Models

∂fα
∂t

+ ~v · ∇~x fα +
qα
mα

(~E + ~v × ~B) · ∇~v fα = Cα

Boltzmann equation based on statistical description.

Describe the collective behavior of plasma species α.
~E and ~B are given by Maxwell’s equations.

Cα is collision operator.

fα(~x , ~v , t) depends on seven variables.

Difficult to analyze and compute.
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Moments of Boltzmann Equation

Moments of the Boltzmann equation w.r.t velocity ~v .

Results in infinite chain of equations, need to truncate.

Assumptions enforce the domain of validity.

First three moments with the assumption of local
thermodynamical equilibrium, results in Two-Fluid equations.

Ignoring viscous, resistive and thermal diffusion effect gives
Ideal Two-Fluid equations.
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Ideal Two-fluid equations:Flow equations

Zeroth moment yields Mass conservation

∂ρα
∂t

+∇ · (ρα~vα) = 0,

with α ∈ {i , e}.

First moments, written in conservation form results in
Momentum conservation

∂(ρα~vα)

∂t
+∇ ·

(
ρα~vα~v

>
α + pαI

)
=

qα
mα

ρα(~E + ~vα × ~B).
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Ideal Two-fluid equations:Flow equations

Second moment give Energy conservation

∂Eα
∂t

+∇ · ((Eα + pα)~vα) = rαρα(~E · ~vα).

Equation of state for ideal gas,

Eα =
pα
γ − 1

+
1

2
ρα|~vα|2

with γ = 5
3 is gas constant.
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Maxwell’s Equation

Closed with Perfectly Hyperbolic Maxwell’s Equations (PHM).

Allows approximate div free evolution of the magnetic field.

Maxwell’s Equation

∂~B

∂t
+∇× ~E + κ∇ψ = 0,

∂ψ

∂t
+ κc2∇ · ~B = 0,

∂~E

∂t
− c2∇× ~B + ξc2∇φ = − 1

ε0
(riρi~vi + reρe~ve) ,

∂φ

∂t
+ ξ∇ · ~E =

ξ

ε0
(riρi + reρe)
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Application of Plasma Flows

Geospace Environment modeling(GEM)-Magnetic
Reconnection

Electric propulsion-Hall effect thrusters.

Control fusion-Plasma confinement.

Circuit Breakers.

Waste management.
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Flux

Ion-Electron flux

~Fα(~U) =


ρα~vα

ρα~vα~v
>
α + pαI,

(Eα + pα)~vα

Nonlinear Euler flux.

Maxwell’s Flux is Linear.

Flux parts are completely split and Eqns. are coupled through
source terms only.
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Entropy

Lemma

Let si , se be defined as fluid entropies,

si = log pi − γ log ρi se = log pe − γ log ρe

Then, smooth solutions of TF Eqns. in one dimension satisfy,

(ρi si )t + (ρv x
i si )x = 0, (ρese)t + (ρev x

e se)x = 0
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Entropy

Proof.

A simple calculation shows,

ρit + ~v x
i ρi + ρi (~v

x
i )x = 0,

pit + γpi (~v
x
i )x + ~v x

i pix = 0,

Combining,
(si )t + ~v x

i (si )x = 0,

Adding mass conservation equation yields the required equality.
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Entropy

Remark

As is standard for conservation laws, the entropy identity for smooth
solutions results in the following entropy inequality (in weak form) for
weak solutions,

(ρi si )t + (ρi~v
x
i si )x ≤ 0, (ρese)t + (ρe~v

x
e se)x ≤ 0

Remark

The above estimates are trivial to generalize to multi-dimensions. The
resulting entropy identity is

(ρi si )t + div(ρi~vi si ) = 0, (ρese)t + div(ρe~vese) = 0
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Energy estimate

Lemma

Assume that there exists constants ρα,min, ρα,max, pα,min such that

ρα,min ≤ ρα ≤ ρα,max, pα ≥ pα,min,

then we have the following estimate,∫
R
‖ρα‖2 + ‖ρα~vα‖2 + ‖Eα‖2dx ≤ C

∫
R
ραsαdx + C1,

for some constants C ,C1 depending on the above parameters.
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Energy estimate

Lemma

Define the electro-magnetic energy as,

EEM =
‖~B‖2 + ‖φ‖2

2
+
‖~E‖2 + ‖ψ‖2

2c2
,

then we have the following global estimate,

d

dt

∫
R

EEMdx ≤ C2

(∫
R

EEMdx +

∫
R

(ρi si + ρese)dx

)
+ C3,

where s, s̄ are the entropies and C2,C3 are constants.
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Source term energy

Lemma

Define energy function,

Es =
ρi~v

2
i + ρe~v

2
e + ε0

~E 2

2
.

If ~U is solutions of
d~U

dt
= S(~U)

then,
dEs

dt
= 0

i.e. energy is conserved. Here S is source of two-fluid equation.

Harish Kumar (with Siddhartha Mishra) Seminar for Applied Mathematics, ETH Zurich, Switzerland.

FVM for the Two-fluid MHD Equations 15/51



Introduction Two-Fluid euqations Finite Volume Methods Numerical Results Conclusions and Future Work

Source Term

Define,
~V = (~vi , ~ve , ~E )>

then
d~V

dt
= S~V(~V)

with

S(~V) =


ri (~E + ~vi × ~B),

re(~E + ~ve × ~B),

− 1
ε0

(riρi~vi + reρe~ve) .
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Source term eigenvalues

First three eigenvalues are,

0, ±iωp

where
ω2

p = ω2
pi + ω2

pe

and

ωpα =

√
nαq2

α

ε0mα
, α ∈ {i , e}

All other eigenvalues are imaginary.

Source terms are oscillatory in nature.

Harish Kumar (with Siddhartha Mishra) Seminar for Applied Mathematics, ETH Zurich, Switzerland.

FVM for the Two-fluid MHD Equations 17/51



Introduction Two-Fluid euqations Finite Volume Methods Numerical Results Conclusions and Future Work

Non-Dimensional equations

Number density n0, Temperature or Pressure (P0 = n0T0).

Length scale x0, Magnetic field B0.

Velocity V0 =
√

P0
ρ0
,

Electric field E0 = V0B0.
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Non-Dimensional equations

Ion

∂ρi

∂t
+∇ · (ρi~vi ) = 0,

∂ρi~vi

∂t
+∇ ·

“
~vi~v
>
i + pi I

”
=

1

r̂g
ρi (~E + ~vi × ~B),

∂Ei

∂t
+∇ · ((Ei + pi )~vi ) =

1

r̂g
ρi (~vi · ~E)

Electrons

∂ρe

∂t
+∇ · (ρe~ve) = 0,

∂ρe~ve

∂t
+∇ ·

“
~ve~v
>
e + pe I

”
= −mi

me

1

r̂g
ρe(~E + ~ve × ~B),

∂Ee

∂t
+∇ · ((Ee + pe)~ve) = −mi

me

1

r̂g
ρe(~ve · ~E)
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Maxwell’s Equation

Maxwell’s Equation

∂~B

∂t
+∇× ~E + κ∇ψ = 0,

∂ψ

∂t
+ κĉ2∇ · ~B = 0,

∂~E

∂t
− ĉ2∇× ~B + ξĉ2∇φ = − mi

λ̂2
D r̂g

(riρi~vi + reρe~ve) ,

∂φ

∂t
+ ξ∇ · ~E =

ξmi

λ̂2
D r̂g

(riρi + reρe).
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Plasma Paramters

Larmor radius rgα = mαVα
qαB0

and r̂g = rg/x0.

Debye Length λD =
√

ε0mαVα
nαqα

and λ̂D = λD/rg

Remark

When Larmor radius r̂g → 0 TF model approach the MHD limit.
SImilarly for r̂g →∞ TF model reduce to simple flow equations for
ions and electrons. TF equations caputers the intermediate physics
of these two limits.
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Finite Volume methods

Key difficulty for FVMs of TF Eqns. is stiff source terms.

Semi-discrete FVM in 1D,

d~Ui

dt
= −

(
~Fi+ 1

2
− ~Fi− 1

2

)
∆x

+ S(~Ui ).
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Numerical Flux

Flux has split structure, so we use Euler and Maxwell
approximate Riemann solvers.

Riemann solvers used are Lax-Friedrich, Rusanov, HLLE,
HLLE4, HLLE6 and Roe.

For second order space discretization limiter are used:
MinMod, MC, Superbee.
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Entropy Conservative flux for TF

Theorem (Tadmor (1987) Math. Comp.)

Consider a one dimensional system of conservation laws with
entropy E(~U) and entropy variable ~V = ∂~UE, entropy flux Q, and

entropy potential χ = (~V, ~F)−Q. Let a finite difference scheme
with consistent flux satisfying,

([~Vi+ 1
2
], ~F∗

i+ 1
2
) = [χi+ 1

2
]

then scheme with this numerical flux satisfy discrete entropy
equality and scheme is entropy conservative.
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Entropy Conservative flux for TF

For Linear Maxwell flux part, entropy flux is a simple average.

For Euler entropy conservative flux is derived by Roe (Hyp
2006),

At shocks entropy dissipates.

Entropy stability using diffusion operator,

~Fi+ 1
2

= ~F∗
i+ 1

2
− 1

2
Ri+ 1

2
|Λi+ 1

2
|R>

i+ 1
2
[~Vi+ 1

2
]

We use Roe and Rusanov diffusion operators.
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Explicit Scheme

Semi-discrete system,

d~Un

dt
= L(~Un) + S(~Un).

First order Euler,

~Un+1 = ~Un + (∆t)(L(~Un) + S(~Un)).

TVD-RK1 for second and third order time stepping.

Standard RK4 for the fourth order

1S. Gottlieb, C. W. Shu, E. Tadmor (2001)
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Implicit Scheme

Semi-discrete system,

d~Un

dt
= L(~Un) + S(~Un+1).

First order scheme,

~Un+1 = ~Un + (∆t)(L(~Un) + S(~Un+1)).

So,

ρn+1
α = ρn

α + (∆t)L(~Un)ρα ,

~Bn+1 = ~Bn + (∆t)L(~Un)~B ,

ψn+1 = ψn + (∆t)L(~Un)ψ.
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Implicit Scheme

Define
~V = (ρi~vi , ρe~ve , ~E )>,

then,
~Vn+1 − ~Vn

∆t
= L(~Un)~V + A~Vn+1

Finally,

~Vn+1 =
(
I− (∆t)A(~Un+1)

)(−1)
(~Vn + (∆t)L(~Un)~V),

Update Ee ,Ei and φ at tn+1.

Second and third order TVD-time stepping with each Euler
step replaces by first order update.
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Implicit Scheme: Matrix A(~Un+1)
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Here r̂1g = −me

mi
r̂g and K =
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m
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Code Status

TF FVM Code is developed by using ALSVID MHD
code(CMA Oslo).

Written in C++ with python interface.

3D cartesian mesh.

Parallel version uses MPI.

MATLAB interface is added for visualization.
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Convergence Rates: Forced Solution

Density ρα = 2 + sin(2πx)

~vα = 1.0, pα = 1.0

Mass Ratio me
mi

= 1
2 .

By = sin(2πx),E z = − sin(2πx)

Periodic boundary conditions.

Added source term for Exact solution to be advection of
density profiles.
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Convergence Rates: Forced Solution
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Figure: Error plots for smooth solutions with 2nd order methods
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Soliton Propagation:Initial Condition

Ion density ρi = (1.0 + exp(−25.0|x − L/3.0|)) with L = 12.0.

Mass Ratio me
mi

= 1
25 .

Pressure pe = 5.0ne and pi = pe

100 .

Reference light speed ĉ = 10.0, Reference Length = 100.0.

Debye Length 1.0, Larmor Radius =0.01.

Periodic boundary conditions.

Ref: Baboolal, S. (2001), Hakim A.(2006)
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Soliton Propagation:HLLE4 with MinMod

Comparison of time discretizations with 5000 cells
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Soliton Propagation: Time Comparison table

Cells o2exp o3exp o4exp o2imp o3imp

500 10.65 15.96 21.82 3.15 5.32

1000 21.25 31.52 44.09 12.36 18.58

2000 46.12 69.68 95.29 49.71 75.01

4000 185.05 277.53 396.77 200.46 299.41

Table: Time comparison of the schemes
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Soliton Propagation: Comparison of Solvers
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Figure: Solution at t = 5.0 for explicit schemes.
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Soliton Propagation: Comparison of Solvers
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Figure: Solution at t = 5.0 for explicit schemes (zoom)
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Soliton Propagation: Comparison of Solvers
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Figure: Solution at t = 5.0 for implicit scheme.
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Soliton Propagation: Comparison of Solvers
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Figure: Solution at t = 5.0 for implicit schemes.(zoom)
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Brio-Wu:Initial Condition

~Uleft =



ρi = 1.0

pi = 5 × 10−5

ρe = 1.0me

mi

pe = 5 × 10−5

Bx = 0.75

By = 1.0

~URight =



ρi = 0.125

pi = 5 × 10−6

ρe = 0.125me

mi

pe = 5 × 10−6

Bx = 0.75

By = −1.0

Mass Ratio me
mi

= 1
1832.6

Pressure p0 = 10−4

Light speed ĉ = 100.

Debye Length 0.01

Ref: Shumlak, U.(2003), Loverich J.(2005), Hakim A.(2006)
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Brio-Wu:Solution with r̂g = 50.0
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Figure: Comparison of o2exp and o2imp with 20000 cells

Time: o2exp 16073.35 sec vs o2imp 17482.41 sec
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Brio-Wu:Solution with r̂g = 0.005
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Figure: Comparison of o2exp and o2imp with 20000 cells

Time: o2exp 27377.6 sec vs o2imp 13613.042 sec
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Brio-Wu:Solution with r̂g = 0.005
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Figure: Comparison of o2exp and o2imp with 20000 cells

Time: o2exp 27377.6 sec vs o2imp 13613.042 sec
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Brio-Wu:Solution with r̂g = 10.0
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Figure: Comparison of Rus3 with ES-Rus with 1000 cells
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Brio-Wu:Solution with r̂g = 0.01
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Figure: Comparison of Rus3 with ES-Rus with 10000 cells
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Magnetic Reconnection:Initial Conditions

Domain D = [−Lx/2, Lx/2]× [−Ly/2, Ly/2] with Lx = 8π
and Ly = 4π.

Number densities n = ne = ni = ( 1
5 + sech2( y

λ)), with λ = 0.5.

~B = B0 tanh
( y
λ

)
ex , with B0 = 0.1

~Je = −B0
λ sech2

( y
λ

)
pe = B0

12 n(y) and pi = 5.0pe .

Magnetic perturbation, δ~B = ~ez ×∇χ with
χ = χ0 cos( 2πx

Lx
) cos πy

Ly
and χ0 = B0

10.0
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Magnetic Reconnection:Non-Dimensional Variables

B0 = 0.1, p0 = 0.01,V0 = 0.1.

Debye Length 0.1

Larmor Radius 1.0, Light speed ĉ = 10.0.

Boundary condition: Periodic in x-direction. Conductive in
y-direction.
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Magnetic Reconnection: |Jz | at t = 25.0

Figure: O3exp on 800× 400 mesh
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Magnetic Reconnection
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Figure: Reconnection Flux vs time
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Conclusions

Presented various entropy and energy estimates for TF eqns..

Time step constraint imposed by stiff source is overcome by
implicit scheme.

For non-stiff problems both schemes are comparable.

Developed entropy stable numerical scheme for TF.

Harish Kumar (with Siddhartha Mishra) Seminar for Applied Mathematics, ETH Zurich, Switzerland.

FVM for the Two-fluid MHD Equations 49/51



Introduction Two-Fluid euqations Finite Volume Methods Numerical Results Conclusions and Future Work

Future Work

Higher order entropy stable discretization.

Further analysis of the time step constraint imposed by stiff
source.

Implicit time stepping for Maxwell part.

Compute Magnetic Reconnection.
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Future Work

THANK YOU
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