Finite difference schemes for nonconservative hyperbolic systems

Ulrik Skre Fjordholm
with Siddharth Mishra

SAM, ETH Zürich
20. August 2010

Conservation laws and entropy conditions

- The hyperbolic conservation law

$$
\begin{equation*}
\mathbf{u}_{t}+\mathbf{f}(\mathbf{u})_{x}=0 \tag{1}
\end{equation*}
$$

$\left(\mathbf{u}:(a, b) \times[0, \infty) \mid \rightarrow \mathbb{R}^{m}\right)$ has non-smooth solutions, and so must be interpreted in a weak, distributional manner:

$$
\int_{0}^{\infty} \int_{a}^{b} \mathbf{u} \psi_{\boldsymbol{t}}+\mathbf{f}(\mathbf{u}) \psi_{x} d x d t+\int_{a}^{b} \mathbf{u}(x, 0) \psi(x, 0) d x=0
$$

for all $\psi \in C_{0}^{\infty}((a, b) \times[0, \infty))$. To obtain uniqueness, entropy conditions must be added.

Conservation laws and entropy conditions

- The hyperbolic conservation law

$$
\begin{equation*}
\mathbf{u}_{t}+\mathbf{f}(\mathbf{u})_{x}=0 \tag{1}
\end{equation*}
$$

$\left(\mathbf{u}:(a, b) \times[0, \infty) \mid \rightarrow \mathbb{R}^{m}\right)$ has non-smooth solutions, and so must be interpreted in a weak, distributional manner:

$$
\int_{0}^{\infty} \int_{a}^{b} \mathbf{u} \psi_{\boldsymbol{t}}+\mathbf{f}(\mathbf{u}) \psi_{x} d x d t+\int_{a}^{b} \mathbf{u}(x, 0) \psi(x, 0) d x=0
$$

for all $\psi \in C_{0}^{\infty}((a, b) \times[0, \infty))$. To obtain uniqueness, entropy conditions must be added.

- Entropy pair: $(\eta(\mathbf{u}), q(\mathbf{u}))$ with $\eta^{\prime \prime}(\mathbf{u})>0$ and $q^{\prime}(\mathbf{u})^{\top}=\eta^{\prime}(\mathbf{u})^{\top} \mathbf{f}^{\prime}(\mathbf{u})$.

$$
\left(\text { mpy. by } \eta^{\prime}(\mathbf{u})^{\top}\right) \quad \Rightarrow \quad \eta(\mathbf{u})_{t}+q(\mathbf{u})_{x}=0
$$

Entropy should be dissipated at shocks, giving the entropy condition

$$
\eta(\mathbf{u})_{t}+q(\mathbf{u})_{x} \leq 0
$$

(in the sense of distributions) for all entropy pairs (η, q).

Conservation laws and entropy conditions

- The hyperbolic conservation law

$$
\begin{equation*}
\mathbf{u}_{t}+\mathbf{f}(\mathbf{u})_{x}=0 \tag{1}
\end{equation*}
$$

$\left(\mathbf{u}:(a, b) \times[0, \infty) \mid \rightarrow \mathbb{R}^{m}\right)$ has non-smooth solutions, and so must be interpreted in a weak, distributional manner:

$$
\int_{0}^{\infty} \int_{a}^{b} \mathbf{u} \psi_{\boldsymbol{t}}+\mathbf{f}(\mathbf{u}) \psi_{x} d x d t+\int_{a}^{b} \mathbf{u}(x, 0) \psi(x, 0) d x=0
$$

for all $\psi \in C_{0}^{\infty}((a, b) \times[0, \infty))$. To obtain uniqueness, entropy conditions must be added.

- Entropy pair: $(\eta(\mathbf{u}), q(\mathbf{u}))$ with $\eta^{\prime \prime}(\mathbf{u})>0$ and $q^{\prime}(\mathbf{u})^{\top}=\eta^{\prime}(\mathbf{u})^{\top} \mathbf{f}^{\prime}(\mathbf{u})$.

$$
\left(\text { mpy. by } \eta^{\prime}(\mathbf{u})^{\top}\right) \quad \Rightarrow \quad \eta(\mathbf{u})_{t}+q(\mathbf{u})_{x}=0
$$

Entropy should be dissipated at shocks, giving the entropy condition

$$
\eta(\mathbf{u})_{t}+q(\mathbf{u})_{x} \leq 0
$$

(in the sense of distributions) for all entropy pairs (η, q).

- Have existence, uniqueness globally for scalar conservation laws and locally for systems.

Nonconservative systems - the problem of multiplication

- Can write (1) as $\mathbf{u}_{t}+\mathbf{f}^{\prime}(\mathbf{u}) \mathbf{u}_{x}=0$. More generally:

$$
\begin{equation*}
\mathbf{w}_{\boldsymbol{t}}+\mathbf{g}(\mathbf{w}) \mathbf{w}_{x}=\mathbf{0} \tag{2}
\end{equation*}
$$

for some $\mathbf{g} \in C\left(\mathbb{R}^{n} ; \mathbb{R}^{n \times n}\right)$.

- $\mathbf{g}(\mathbf{w}) \mathbf{w}_{x}$ for $\mathbf{w} \in \operatorname{BV}\left((a, b) \times \mathbb{R}_{+}\right)$is a nonconservative product.

Nonconservative systems - the problem of multiplication

- Can write (1) as $\mathbf{u}_{t}+\mathbf{f}^{\prime}(\mathbf{u}) \mathbf{u}_{x}=0$. More generally:

$$
\begin{equation*}
\mathbf{w}_{\boldsymbol{t}}+\mathbf{g}(\mathbf{w}) \mathbf{w}_{x}=\mathbf{0} \tag{2}
\end{equation*}
$$

for some $\mathbf{g} \in C\left(\mathbb{R}^{\boldsymbol{n}} ; \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}\right)$.

- $\mathbf{g}(\mathbf{w}) \mathbf{w}_{x}$ for $\mathbf{w} \in \operatorname{BV}\left((a, b) \times \mathbb{R}_{+}\right)$is a nonconservative product.
- (2) is not defined when \boldsymbol{w} is discontinuous - we cannot throw derivatives onto a test function ψ.
- Example: If H is the Heaviside function

$$
H(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

then $\frac{d H}{d x}=\delta_{0}$, the Dirac measure, but

$$
H \frac{d H}{d x}=H \delta_{0}
$$

is undefined at 0 .

DLM theory of nonconservative products

Fix $t \in \mathbb{R}_{+}$and consider \mathbf{w} as a function in $\operatorname{BV}\left((a, b) ; \mathbb{R}^{n}\right)$.

- Theory of Dal Maso, LeFloch and Murat [3]: Define $\mathbf{g}(\mathbf{w}) \frac{d w}{d x}$ as a measure μ :
- If w is continuous in $B \subset(a, b)$ then

$$
\mu(B):=\int_{B} \mathbf{g}(\mathbf{w})\left(\frac{d \mathbf{w}}{d x}\right)
$$

($\frac{d w}{d x}$ is a Borel measure and $g(w)$ is continuous, so this is well-defined).

DLM theory of nonconservative products

Fix $t \in \mathbb{R}_{+}$and consider \mathbf{w} as a function in $\operatorname{BV}\left((a, b) ; \mathbb{R}^{n}\right)$.

- Theory of Dal Maso, LeFloch and Murat [3]: Define $\mathbf{g}(\mathbf{w}) \frac{d w}{d x}$ as a measure μ :
- If w is continuous in $B \subset(a, b)$ then

$$
\mu(B):=\int_{\boldsymbol{B}} \mathbf{g}(\mathbf{w})\left(\frac{d \mathbf{w}}{d x}\right)
$$

($\frac{d w}{d x}$ is a Borel measure and $g(w)$ is continuous, so this is well-defined).

- If w is discontinuous at $x \in(a, b)$ then

$$
\mu(\{x\}):=\int_{0}^{\mathbf{1}} \mathbf{g}\left(\phi\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right)\right) \frac{\partial \phi}{\partial s}\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right) d s
$$

where $\phi:[0,1] \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}}$ is a family of paths: for all $\mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}, \mathbf{w} \in \mathbb{R}^{\boldsymbol{n}}$ we have

$$
\phi\left(0 ; \mathbf{w}_{\mathcal{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=\mathbf{w}_{\boldsymbol{L}}, \quad \phi\left(\mathbf{1}, \mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=v_{\boldsymbol{R}}, \quad \phi(\mathbf{s}, \mathbf{w}, \mathbf{w}) \equiv \mathbf{w} \quad \forall \boldsymbol{s} \in[0,1] .
$$

DLM theory of nonconservative products

Fix $t \in \mathbb{R}_{+}$and consider \mathbf{w} as a function in $\operatorname{BV}\left((a, b) ; \mathbb{R}^{n}\right)$.

- Theory of Dal Maso, LeFloch and Murat [3]: Define $\mathbf{g}(\mathbf{w}) \frac{d w}{d x}$ as a measure μ :
- If \mathbf{w} is continuous in $B \subset(a, b)$ then

$$
\mu(B):=\int_{\boldsymbol{B}} \mathbf{g}(\mathbf{w})\left(\frac{d \mathbf{w}}{d x}\right)
$$

($\frac{d w}{d x}$ is a Borel measure and $g(w)$ is continuous, so this is well-defined).

- If w is discontinuous at $x \in(a, b)$ then

$$
\mu(\{x\}):=\int_{0}^{\mathbf{1}} \mathbf{g}\left(\phi\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right)\right) \frac{\partial \phi}{\partial s}\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right) d s
$$

where $\phi:[0,1] \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}}$ is a family of paths: for all $\mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}, \mathbf{w} \in \mathbb{R}^{\boldsymbol{n}}$ we have

$$
\phi\left(0 ; \mathbf{w}_{\mathcal{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=\mathbf{w}_{\boldsymbol{L}}, \quad \phi\left(\mathbf{1}, \mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=v_{\boldsymbol{R}}, \quad \phi(\mathbf{s}, \mathbf{w}, \mathbf{w}) \equiv \mathbf{w} \quad \forall \boldsymbol{s} \in[0,1] .
$$

- We denote $\left[\mathbf{g}(\mathbf{w}) \frac{d \mathbf{w}}{d x}\right]_{\phi}=\mu$.
- Theorem: $\left[\mathbf{g}(\mathbf{w}) \frac{d \mathbf{w}}{d x}\right]_{\phi}$ is a bounded Borel measure.

DLM theory of nonconservative products

Fix $t \in \mathbb{R}_{+}$and consider \mathbf{w} as a function in $\operatorname{BV}\left((a, b) ; \mathbb{R}^{n}\right)$.

- Theory of Dal Maso, LeFloch and Murat [3]: Define $\mathbf{g}(\mathbf{w}) \frac{d w}{d x}$ as a measure μ :
- If w is continuous in $B \subset(a, b)$ then

$$
\mu(B):=\int_{\boldsymbol{B}} \mathbf{g}(\mathbf{w})\left(\frac{d \mathbf{w}}{d x}\right)
$$

($\frac{d w}{d x}$ is a Borel measure and $g(w)$ is continuous, so this is well-defined).

- If w is discontinuous at $x \in(a, b)$ then

$$
\mu(\{x\}):=\int_{0}^{\mathbf{1}} \mathbf{g}\left(\phi\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right)\right) \frac{\partial \phi}{\partial s}\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right) d s
$$

where $\phi:[0,1] \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}}$ is a family of paths: for all $\mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}, \mathbf{w} \in \mathbb{R}^{\boldsymbol{n}}$ we have

$$
\phi\left(0 ; \mathbf{w}_{\mathcal{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=\mathbf{w}_{\boldsymbol{L}}, \quad \phi\left(\mathbf{1}, \mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=v_{\boldsymbol{R}}, \quad \phi(\mathbf{s}, \mathbf{w}, \mathbf{w}) \equiv \mathbf{w} \quad \forall \boldsymbol{s} \in[0,1] .
$$

- We denote $\left[\mathbf{g}(\mathbf{w}) \frac{d \mathbf{w}}{d x}\right]_{\phi}=\mu$.
- Theorem: $\left[\mathbf{g}(\mathbf{w}) \frac{d \mathbf{w}}{d x}\right]_{\phi}$ is a bounded Borel measure.

DLM theory of nonconservative products

Fix $t \in \mathbb{R}_{+}$and consider \mathbf{w} as a function in $\operatorname{BV}\left((a, b) ; \mathbb{R}^{n}\right)$.

- Theory of Dal Maso, LeFloch and Murat [3]: Define $\mathbf{g}(\mathbf{w}) \frac{d w}{d x}$ as a measure μ :
- If \mathbf{w} is continuous in $B \subset(a, b)$ then

$$
\mu(B):=\int_{\boldsymbol{B}} \mathbf{g}(\mathbf{w})\left(\frac{d \mathbf{w}}{d x}\right)
$$

($\frac{d w}{d x}$ is a Borel measure and $g(w)$ is continuous, so this is well-defined).

- If w is discontinuous at $x \in(a, b)$ then

$$
\mu(\{x\}):=\int_{0}^{\mathbf{1}} \mathbf{g}\left(\phi\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right)\right) \frac{\partial \phi}{\partial s}\left(s ; \mathbf{w}\left(x^{-}\right), \mathbf{w}\left(x^{+}\right)\right) d s
$$

where $\phi:[0,1] \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}}$ is a family of paths: for all $\mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}, \mathbf{w} \in \mathbb{R}^{\boldsymbol{n}}$ we have

$$
\phi\left(0 ; \mathbf{w}_{\mathcal{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=\mathbf{w}_{\boldsymbol{L}}, \quad \phi\left(\mathbf{1}, \mathbf{w}_{\boldsymbol{L}}, \mathbf{w}_{\boldsymbol{R}}\right)=v_{\boldsymbol{R}}, \quad \phi(\mathbf{s}, \mathbf{w}, \mathbf{w}) \equiv \mathbf{w} \quad \forall \boldsymbol{s} \in[0,1] .
$$

- We denote $\left[\mathbf{g}(\mathbf{w}) \frac{d \mathbf{w}}{d x}\right]_{\phi}=\mu$.
- Theorem: $\left[\mathbf{g}(\mathbf{w}) \frac{d \mathbf{w}}{d x}\right]_{\phi}$ is a bounded Borel measure.

Weak solutions

Recall that a weak solution of (1) satisfies

$$
\int_{0}^{\infty} \int_{a}^{b} \mathbf{u} \psi_{\boldsymbol{t}}+\mathbf{f}(\mathbf{u}) \psi_{x} d x d t+\int_{a}^{b} \mathbf{u}(x, 0) \psi(x, 0) d x=0
$$

for all $\psi \in C_{0}^{\infty}((a, b) \times[0, \infty))$.

Weak solutions

Recall that a weak solution of (1) satisfies

$$
\int_{0}^{\infty} \int_{a}^{b} \mathbf{u} \psi_{\boldsymbol{t}}+\mathbf{f}(\mathbf{u}) \psi_{x} d x d t+\int_{a}^{b} \mathbf{u}(x, 0) \psi(x, 0) d x=0
$$

for all $\psi \in C_{0}^{\infty}((a, b) \times[0, \infty))$.

Definition

A function $\mathbf{w} \in L^{\infty}\left([0, \infty) ; \mathrm{BV}\left((a, b) ; \mathbb{R}^{n}\right)\right)$ is a weak solution of (2) if

$$
\int_{0}^{\infty} \int_{a}^{b} \mathbf{w} \psi_{\boldsymbol{t}} d x-\left\langle\left[\mathbf{g}(\mathbf{w}(\cdot, t)) \mathbf{w}_{x}(\cdot, t)\right]_{\phi}, \psi(\cdot, t)\right\rangle d t+\int_{a}^{b} \mathbf{w}(x, 0) \psi(x, 0) d x=0
$$

for all $\psi \in C_{0}^{\infty}((a, b) \times[0, \infty))$.
Here, $\langle\cdot, \cdot\rangle$ denotes the pairing

$$
\left\langle\left[\mathbf{g}(\mathbf{w}(\cdot, t)) \mathbf{w}_{x}(\cdot, t)\right]_{\phi}, \psi(\cdot, t)\right\rangle=\int_{(\mathbf{a}, \boldsymbol{b})} \psi(x, t)\left[\mathbf{g}(\mathbf{w}(\cdot, t)) \mathbf{w}_{x}(\cdot, t)\right]_{\phi}(x)
$$

where the integral is with respect to the measure $\left[\mathbf{g}(\mathbf{w}(\cdot, t)) \mathbf{w}_{x}(\cdot, t)\right]_{\phi}$.

Conservative and path conservative schemes

- We discretize the domain into intervals $l_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$, with $x_{j+1 / 2}-x_{j-1 / 2} \equiv \Delta x$. We solve for

$$
\mathbf{u}_{j}^{n} \approx \frac{1}{\Delta x} \int_{l_{j}} \mathbf{u}\left(x, t^{n}\right)
$$

- A finite volume scheme for (1) is conservative if it is of the form

$$
\mathbf{u}_{j}^{n+\boldsymbol{1}}=\mathbf{u}_{j}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{F}_{j+1 / 2}-\mathbf{F}_{j-1 / 2}\right),
$$

where $\mathbf{F}_{j+1 / 2}=\mathbf{F}\left(\mathbf{u}_{j}^{n}, \mathbf{u}_{j+1}^{n}\right)$ satisfies $\mathbf{F}(\mathbf{u}, \mathbf{u})=\mathbf{f}(\mathbf{u})$ for all $u \in \mathbb{R}^{n}$.

Conservative and path conservative schemes

- We discretize the domain into intervals $I_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$, with $x_{j+1 / 2}-x_{j-1 / 2} \equiv \Delta x$. We solve for

$$
\mathbf{u}_{j}^{n} \approx \frac{1}{\Delta x} \int_{l_{j}} \mathbf{u}\left(x, t^{n}\right)
$$

- A finite volume scheme for (1) is conservative if it is of the form

$$
\mathbf{u}_{j}^{n+\boldsymbol{1}}=\mathbf{u}_{j}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{F}_{j+1 / 2}-\mathbf{F}_{j-1 / 2}\right),
$$

where $\mathbf{F}_{j+1 / 2}=\mathbf{F}\left(\mathbf{u}_{j}^{n}, \mathbf{u}_{j+1}^{n}\right)$ satisfies $\mathbf{F}(\mathbf{u}, \mathbf{u})=\mathbf{f}(\mathbf{u})$ for all $u \in \mathbb{R}^{n}$.

- A scheme for (2) is path conservative with respect to ϕ if it is of the form

$$
\mathbf{w}_{j}^{n+\mathbf{1}}=\mathbf{w}_{j}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{D}_{j+1 / 2}^{-}+\mathbf{D}_{j-1 / 2}^{+}\right)
$$

for some $\mathbf{D}_{j+1 / 2}^{ \pm}=\mathbf{D}^{ \pm}\left(\mathbf{w}_{j}^{n}, \mathbf{w}_{j+1}^{n}\right)$ which satisfies

- $\mathbf{D}^{ \pm}(\mathbf{w}, \mathbf{w})=0$ for all $\mathbf{w} \in \mathbb{R}^{\boldsymbol{n}}$
- $\mathbf{D}_{\boldsymbol{j}+1 / 2}^{-}+D_{\boldsymbol{j}+1 / 2}^{+}=\int_{0}^{\mathbf{1}} \mathbf{g}\left(\phi\left(\boldsymbol{s} ; \mathbf{w}_{\boldsymbol{j}}, \mathbf{w}_{\boldsymbol{j}+\mathbf{1}}\right)\right) \frac{\partial \phi}{\partial \boldsymbol{s}}\left(\boldsymbol{s} ; \mathbf{w}_{\boldsymbol{j}}, \mathbf{w}_{\boldsymbol{j}+\mathbf{1}}\right) d s$.
- These two definitions are equivalent if $\mathbf{g}(\mathbf{u})=\mathbf{f}^{\prime}(\mathbf{u})$ for some \mathbf{f}.

Deficiencies of path conservative schemes

- Pointwise convergence of numerical approximations \mathbf{w}^{Δ} to some \mathbf{w} does not imply that \mathbf{w} solves (2) (no Lax-Wendroff theorem).

Deficiencies of path conservative schemes

- Pointwise convergence of numerical approximations \mathbf{w}^{Δ} to some \mathbf{w} does not imply that \mathbf{w} solves (2) (no Lax-Wendroff theorem).
- Recent studies $[1,2]$ have shown that path conservative schemes can indeed converge to wrong solutions, with incorrect shock speeds, intermediate states, etc.

Deficiencies of path conservative schemes

- Pointwise convergence of numerical approximations \mathbf{w}^{Δ} to some \mathbf{w} does not imply that \mathbf{w} solves (2) (no Lax-Wendroff theorem).
- Recent studies $[1,2]$ have shown that path conservative schemes can indeed converge to wrong solutions, with incorrect shock speeds, intermediate states, etc.

Theorem (Castro et. al. [2])

Let $\mathbf{w}^{\Delta x}$ be computed by a path conservative scheme and assume that $\left\|\mathbf{w}^{\Delta x}(\cdot, t)\right\|_{\mathrm{BV}} \leq C$ uniformly in time. If $\mathbf{w}^{\Delta x} \rightarrow \mathbf{w}$ pointwise a.e. as $\Delta x \rightarrow 0$, then
(i) There is a bounded measure $\lambda: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ such that

$$
\mathbf{w}_{\mathbf{t}}+\left[\mathbf{g}(\mathbf{w}) \mathbf{w}_{x}\right]_{\phi}=\lambda
$$

(ii) If the ϕ-graph completions of $\mathbf{w}^{\Delta x}$ converge uniformly to that of \mathbf{w}, then

$$
\mathbf{w}_{\mathbf{t}}+\left[\mathbf{g}(\mathbf{w}) \mathbf{w}_{\mathbf{x}}\right]_{\phi}=0
$$

Euler equations in Lagrangian coordinates

- Consider the model system

$$
\begin{align*}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \tag{3}\\
E_{t}+(p u)_{x} & =0,
\end{align*}
$$

with

$$
E=e+\frac{u^{2}}{2}, \quad e=\frac{p v}{\gamma-1} .
$$

Here, v is specific volume, u velocity, p gas pressure, E total energy and e internal energy.

Euler equations in Lagrangian coordinates

- Consider the model system

$$
\begin{align*}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \tag{3}\\
E_{t}+(p u)_{x} & =0,
\end{align*}
$$

with

$$
E=e+\frac{u^{2}}{2}, \quad e=\frac{p v}{\gamma-1} .
$$

Here, v is specific volume, u velocity, p gas pressure, E total energy and e internal energy.

- Abgrall and Karni [1] consider the equivalent, nonconservative system

$$
\begin{align*}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \tag{4}\\
e_{t}+p e_{x} & =0 .
\end{align*}
$$

No path conservative schemes for (4) were found that converge to the entropy solution of (3) (the "correct" solution).

Regularized systems

- Consider instead the following parabolic, regularized form of (3):

$$
\begin{align*}
v_{t}-u_{x} & =\varepsilon v_{x x} \\
u_{t}+p_{x} & =\varepsilon u_{x x} \tag{5}\\
E_{t}+(p u)_{x} & =\varepsilon E_{x x} .
\end{align*}
$$

Regularized systems

- Consider instead the following parabolic, regularized form of (3):

$$
\begin{align*}
v_{t}-u_{x} & =\varepsilon v_{x x} \\
u_{t}+p_{x} & =\varepsilon u_{x x} \tag{5}\\
E_{t}+(p u)_{x} & =\varepsilon E_{x x} .
\end{align*}
$$

- The equivalent formulation in $\mathbf{w}=(v, u, e)$ is

$$
\begin{align*}
v_{t}-u_{x} & =\varepsilon v_{x x} \\
u_{\boldsymbol{t}}+p_{x} & =\varepsilon u_{x x} \tag{6}\\
e_{\boldsymbol{t}}+p u_{x} & =\varepsilon e_{x x}+\varepsilon u_{x}^{2}
\end{align*}
$$

Regularized systems

- Consider instead the following parabolic, regularized form of (3):

$$
\begin{align*}
v_{\boldsymbol{t}}-u_{x} & =\varepsilon v_{x x} \\
u_{t}+p_{x} & =\varepsilon u_{x x} \tag{5}\\
E_{t}+(p u)_{x} & =\varepsilon E_{x x} .
\end{align*}
$$

- The equivalent formulation in $\mathbf{w}=(v, u, e)$ is

$$
\begin{align*}
v_{t}-u_{x} & =\varepsilon v_{x x} \\
u_{\boldsymbol{t}}+p_{x} & =\varepsilon u_{x x} \tag{6}\\
e_{\boldsymbol{t}}+p u_{x} & =\varepsilon e_{x x}+\varepsilon u_{x}^{2} .
\end{align*}
$$

- We will discretize (5) and (6) using entropy conservative schemes for the left-hand sides and central differences for the right-hand sides.
- Entropy stable scheme for conservative system (5):

$$
\begin{aligned}
\frac{d}{d t} v_{j}-\frac{u_{j+1}-u_{j-1}}{2 \Delta x} & =\varepsilon \frac{v_{j+1}-2 v_{j}+v_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} u_{j}+\frac{p_{j+1}-p_{j-1}}{2 \Delta x} & =\varepsilon \frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} E_{j}+p_{j} \frac{u_{j+1}-u_{j-1}}{2 \Delta x}+u_{j} \frac{p_{j+1}-p_{j-1}}{2 \Delta x} & =\varepsilon \frac{E_{j+1}-2 E_{j}+E_{j-1}}{\Delta x^{2}}
\end{aligned}
$$

- Entropy stable scheme for nonconservative system (6):

$$
\begin{aligned}
\frac{d}{d t} v_{j}-\frac{u_{j+1}-u_{j-1}}{2 \Delta x} & =\varepsilon \frac{v_{j+1}-2 v_{j}+v_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} u_{j}+\frac{p_{j+1}-p_{j-1}}{2 \Delta x} & =\varepsilon \frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} e_{j}+p_{j} \frac{u_{j+1}-u_{j-1}}{2 \Delta x} & =\varepsilon \frac{e_{j+1}-2 e_{j}+e_{j-1}}{\Delta x^{2}}+\varepsilon\left(\frac{u_{j+1}-u_{j-1}}{2 \Delta x}\right)^{2}
\end{aligned}
$$

- Entropy stable scheme for conservative system (5):

$$
\begin{aligned}
\frac{d}{d t} v_{j}-\frac{u_{j+1}-u_{j-1}}{2 \Delta x} & =\varepsilon \frac{v_{j+1}-2 v_{j}+v_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} u_{j}+\frac{p_{j+1}-p_{j-1}}{2 \Delta x} & =\varepsilon \frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} E_{j}+p_{j} \frac{u_{j+1}-u_{j-1}}{2 \Delta x}+u_{j} \frac{p_{j+1}-p_{j-1}}{2 \Delta x} & =\varepsilon \frac{E_{j+1}-2 E_{j}+E_{j-1}}{\Delta x^{2}}
\end{aligned}
$$

- Entropy stable scheme for nonconservative system (6):

$$
\begin{aligned}
\frac{d}{d t} v_{j}-\frac{u_{j+1}-u_{j-1}}{2 \Delta x} & =\varepsilon \frac{v_{j+1}-2 v_{j}+v_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} u_{j}+\frac{p_{j+1}-p_{j-1}}{2 \Delta x} & =\varepsilon \frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t} e_{j}+p_{j} \frac{u_{j+1}-u_{j-1}}{2 \Delta x} & =\varepsilon \frac{e_{j+1}-2 e_{j}+e_{j-1}}{\Delta x^{2}}+\varepsilon\left(\frac{u_{j+1}-u_{j-1}}{2 \Delta x}\right)^{2}
\end{aligned}
$$

- To avoid having to use very small Δx in order to resolve the viscous profile, we set

$$
\varepsilon=\frac{c^{n}}{2} \Delta x
$$

where $c^{n}:=\max _{j}\left|c_{j}^{n}\right|$ and c_{j}^{n} are the eigenvalues of $\mathbf{f}^{\prime}\left(\mathbf{u}\left(x_{j}, t^{n}\right)\right)$.

Numerical experiment

Let

$$
\left(v_{0}(x), u_{0}(x), p_{0}(x)\right)= \begin{cases}(8,0,0.1) & \text { if } \quad x<0.5 \\ (2.0984,2.3047,1) & \text { if } \quad x>0.5\end{cases}
$$

The exact solution should be a single right-going shock.

Numerical experiment

Let

$$
\left(v_{0}(x), u_{0}(x), p_{0}(x)\right)= \begin{cases}(8,0,0.1) & \text { if } \quad x<0.5 \\ (2.0984,2.3047,1) & \text { if } \quad x>0.5\end{cases}
$$

The exact solution should be a single right-going shock.

(a) Conservative approximation.

Numerical experiment

Let

$$
\left(v_{0}(x), u_{0}(x), p_{0}(x)\right)= \begin{cases}(8,0,0.1) & \text { if } \quad x<0.5 \\ (2.0984,2.3047,1) & \text { if } \quad x>0.5 .\end{cases}
$$

The exact solution should be a single right-going shock.

(a) Conservative approximation.

(b) Nonconservative approximation.

Numerical experiment

Let

$$
\left(v_{0}(x), u_{0}(x), p_{0}(x)\right)= \begin{cases}(8,0,0.1) & \text { if } \quad x<0.5 \\ (2.0984,2.3047,1) & \text { if } \quad x>0.5\end{cases}
$$

The exact solution should be a single right-going shock.

(a) Conservative approximation.

(b) Nonconservative approxima- (c) Nonconservative approximation tion.

without u_{x}^{2} term.

Numerical experiment

Let

$$
\left(v_{0}(x), u_{0}(x), p_{0}(x)\right)= \begin{cases}(8,0,0.1) & \text { if } \quad x<0.5 \\ (2.0984,2.3047,1) & \text { if } \quad x>0.5\end{cases}
$$

The exact solution should be a single right-going shock.

(a) Conservative approximation.

(b) Nonconservative approximation.

(c) Nonconservative approximation without u_{x}^{2} term.

Isothermal Euler equations

Consider the Isothermal Euler equations [4]

$$
\left\{\begin{array} { l }
{ \rho _ { \boldsymbol { t } } + (\rho u) _ { x } = 0 } \tag{7}\\
{ (\rho u) _ { \boldsymbol { t } } + (\rho u ^ { 2 } + \rho) _ { x } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\rho_{\boldsymbol{t}}+(\rho u)_{x}=0 \\
u_{\boldsymbol{t}}+\left(\frac{u^{2}}{2}+\log \rho\right)_{x}=0 .
\end{array}\right.\right.
$$

We regularize these as

$$
\left\{\begin{array} { l }
{ \rho _ { \boldsymbol { t } } + (\rho u) _ { x } = \varepsilon \rho _ { x x } } \tag{8}\\
{ (\rho u) _ { \boldsymbol { t } } + (\rho u ^ { 2 } + \rho) _ { x } = \varepsilon (\rho u) _ { x x } , }
\end{array} \quad \left\{\begin{array}{l}
\rho_{\boldsymbol{t}}+(\rho u)_{x}=\varepsilon \rho_{x x} \\
u_{\boldsymbol{t}}+\left(\frac{u^{2}}{2}+\log \rho\right)_{x}=\varepsilon u_{x x}+2 \varepsilon(\log \rho)_{x} u_{x} .
\end{array}\right.\right.
$$

Isothermal Euler equations

Consider the Isothermal Euler equations [4]

$$
\left\{\begin{array} { l }
{ \rho _ { t } + (\rho u) _ { x } = 0 } \tag{7}\\
{ (\rho u) _ { t } + (\rho u ^ { 2 } + \rho) _ { x } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\rho_{t}+(\rho u)_{x}=0 \\
u_{t}+\left(\frac{u^{2}}{2}+\log \rho\right)_{x}=0
\end{array}\right.\right.
$$

We regularize these as

$$
\left\{\begin{array} { l }
{ \rho _ { \boldsymbol { t } } + (\rho u) _ { x } = \varepsilon \rho _ { x x } } \tag{8}\\
{ (\rho u) _ { t } + (\rho u ^ { 2 } + \rho) _ { x } = \varepsilon (\rho u) _ { x x } , }
\end{array} \quad \left\{\begin{array}{l}
\rho_{\boldsymbol{t}}+(\rho u)_{x}=\varepsilon \rho_{x x} \\
u_{\boldsymbol{t}}+\left(\frac{u^{2}}{2}+\log \rho\right)_{x}=\varepsilon u_{x x}+2 \varepsilon(\log \rho)_{x} u_{x}
\end{array}\right.\right.
$$

We discretize the regularized nonconservative system as before with entropy conservative schemes for the left-hand side and central differences for the right-hand side, obtaining

$$
\begin{aligned}
\frac{d}{d t} \rho_{j}+\frac{\rho_{j+1} u_{j+1}-\rho_{j-1} u_{j-1}}{2 \Delta x}= & \varepsilon \frac{\rho_{j+1}-2 \rho_{j}+\rho_{j-1}}{\Delta x^{2}} \\
\frac{d}{d t}\left(\rho_{j} u_{j}\right)+\frac{u_{j+1}^{2}-u_{j-1}^{2}}{4 \Delta x}+\frac{\log \rho_{j+1}-\log \rho_{j-1}}{2 \Delta x}= & \varepsilon \frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}} \\
& +2 \varepsilon\left(\frac{\log \rho_{j+1}-\log \rho_{j-1}}{2 \Delta x}\right)\left(\frac{u_{j+1}-u_{j-1}}{2 \Delta x}\right)
\end{aligned}
$$

Numerical experiment

We consider the following numerical experiment, taken from [4]:

$$
\left(\rho_{0}(x), u_{0}(x)\right)=\left\{\begin{array}{lll}
(0.4,1) & \text { if } & x<0.5 \\
(0.1,0) & \text { if } & x>0.5
\end{array}\right.
$$

Numerical experiment

We consider the following numerical experiment, taken from [4]:

$$
\left(\rho_{0}(x), u_{0}(x)\right)=\left\{\begin{array}{lll}
(0.4,1) & \text { if } & x<0.5 \\
(0.1,0) & \text { if } & x>0.5
\end{array}\right.
$$

- Nonconservative systems are highly sensitive to regularization terms.
- Path conservative schemes may converge to incorrect regularization limits. (Equivalent equation has non-vanishing source term.)
- A faithful discretization of physical diffusive terms is vital for convergence.
- The recipe of entropy conservative flux + discretization of physical diffusion shows promise.

References

R. Abgrall and S. Karni.

A comment on the computation of non-conservative products.
J. Comput. Phys., 229 (8), 2010, 2759-2763.
M. J. Castro, P. LeFloch, M. L. Munoz Ruiz and C. Pares.

Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes.
J. Comput. Phys., 227 (17), 2008, 8107-8129.

- G. Dal Maso, P. LeFloch and F. Murat.

Definition and weak stability of nonconservative products.
J. Math. Pures. Appl., 74, 1995, 483-548.

Smadar Karni.
Viscous Shock Profiles and Primitive Formulations.
SIAM Journal on Numerical Analysis, 29, pp. 1592-1609 (1992).

