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Linear Eigenvalue Problems

Standard eigenvalue problem

Given A ∈ Cn×n, we seek

eigenvalues λ ∈ C, and

eigenvectors x ∈ Cn \ {0}
such that Ax = λx .

Generalized eigenvalue problem

Given A,B ∈ Cn×n, we seek

eigenvalues λ ∈ C, and

eigenvectors x ∈ Cn \ {0}
such that Ax = λBx .
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Generalization to nonlinear EVPs

Both problems can be reformulated as

T (λ)x = 0,

where

T (λ) =

{
A− λI , for the standard EVP,

A− λB, for the generalized EVP.

T (λ) = λdAd + · · ·+ λA1 + A0  polynomial EVP

T (λ) = f1(λ)A1 + · · ·+ fr (λ)Ar  nonlinear EVP

Aj ∈ Cn×n constant matrices, fj : D → C analytic,
D ⊂ C open, connected
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Free vibrations of mechanical systems with damping

Equations of motion

Mü + Cu̇ + Ku = 0

M: mass matrix

C : damping matrix

K : stiffness matrix

System of second-order, linear, homogeneous ODEs

Eigenfrequencies ω of the mechanical system are eigenvalues of

(ω2M + ωC + K )u = 0.

 Quadratic eigenvalue problem
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Free vibrations of string with elastically attached mass

vibrating string  −u′′ = λu in Ω = (0, 1)

left end clamped  u(0) = 0

mass elastically attached to right end  u′(1) +
αλ

λ− α
u(1) = 0

λ-dependent boundary condition!

Discretization with n piecewise linear FE leads to[
K +

αλ

λ− α
ene

T
n − λM

]
x = 0.
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Delay eigenvalue problems

Linear delay differential equation with r discrete delays

u̇(t) = A0u(t) + A1u(t − τ1) + · · ·+ Aru(t − τr )

models influences which take effect only after some time

famous example: Hot shower problem

stability analysis involves nonlinear EVPs

Delay eigenvalue problem

(−λI + A0 + e−τ1λA1 + · · ·+ e−τrλAr )x = 0
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Electronic bandstructure computations

photonic crystal: lattice of mixed dielectric media

control electromagnetic waves by designing the crystal such that
it inhibits their propagation

complete photonic band gap: frequency range with no propagation of
electromagnetic waves of any polarization travelling in any direction
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Electronic bandstructure computations II

2D crystal: periodic in x- and y -direction; homogeneous in z-direction

consider only electromagnetic waves propagating in the xy -plane
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Electronic bandstructure computations III

Time-harmonic modes of electromagnetic wave (E ,H) can be decomposed
into

transverse electric (TE) polarized modes (Ex ,Ey , 0, 0, 0,Hz),

transverse magnetic (TM) polarized modes (0, 0,Ez ,Hx ,Hy , 0).

For TM polarized modes, the macroscopic Maxwell Equations reduce to a
scalar equation for Ez ,

−∆Ez = ω2ε(r , ω)Ez .

r : spatial variable

ω: frequency

ε: relative permittivity

ω-dependent material parameter!
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Electronic bandstructure computations IV

Bloch ansatz: Ez = eik·ru(r)

−(∇+ ik) · (∇+ ik)u(r) = ω2ε(r , ω)u(r)

k: wave vector
u: periodic function on lattice

assumption: lattice consists of 2 materials, one of which is air

Ω = Ω1 ∪ Ω2, ε(r , ω) =

{
ε1 = 1, r ∈ Ω1

ε2(ω), r ∈ Ω2

discretization using discontinuous Galerkin with p-enhancement
(Engström & Wang, 2010)[

G − ω2M1 − ω2ε2(ω)M2

]
u = 0
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Electronic bandstructure computations V

nonlinearity caused by ω-dependency of ε2

popular model for permittivity: Lorentz model

ε2(ω) = α +
K∑

k=1

ξk
ηk − ω2 − iγkω

 rational EVP
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Spectrum of nonlinear EVPs

Definition

Let T : D → Cn×n be holomorphic. We call

ρ(T ) := {λ ∈ D : T (λ) is invertible} the resolvent set of T ,

σ(T ) := D \ ρ(T ) the spectrum of T .

Theorem

Either the resolvent set of T is empty or the spectrum of T consists
of isolated eigenvalues.

The number of eigenvalues in σ(T ) may be infinite!
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Newton-based methods

Two possibilities to apply Newton’s method:

1 detT (λ) = 0 (scalar equation in C)

2 T (λ)x = 0 (vector equation in Cn)

We focus on the second case.

x , λ  n + 1 unknowns

T (λ)x = 0  n constraints

We have to add one additional constraint.

vHx = 1
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Nonlinear inverse iteration

F (x , λ) :=

[
T (λ)x
vHx − 1

]
Application of Newton’s method

0
!

= F (x , λ) + DF (x , λ)

[
x̂ − x

λ̂− λ

]
=

[
T (λ)x̂ + (λ̂− λ)T ′(λ)x

vH x̂ − 1

]
yields

x̂ = −(λ̂− λ)T (λ)−1T ′(λ)x

λ̂ = λ− 1

vHT (λ)−1T ′(λ)x
.
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Nonlinear inverse iteration II

Algorithm

Input: approximate eigenpair (x0, λ0) with vHx0 = 1
for j = 0, 1, . . . until convergence do

solve T (λj)x̃j+1 = T ′(λj)xj for x̃j+1

update λj+1 := λj −
vHxj

vH x̃j+1

normalize xj+1 := 1
vHuj+1

x̃j+1

end for

local quadratic convergence to simple eigenvalues

main computational work lies in the solution of the linear system
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Reducing the computational work

Replacing T (λj)
−1 by T (σ)−1 for a fixed σ leads to misconvergence!

But ...

x̂ = −(λ̂− λ)T (λ)−1T ′(λ)x

= x − T (λ)−1T (λ)x − (λ̂− λ)T (λ)−1T ′(λ)x

= x − T (λ)−1[T (λ) + (λ̂− λ)T ′(λ)
]
x

= x − T (λ)−1T (λ̂)x + O
(
|λ̂− λ|2

)
Now T (σ)−1 can be used in place of T (λ)−1 safely.

Even inexact solution of the linear system is possible.
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Residual inverse iteration

Algorithm

Input: approximate eigenpair (x0, σ)
for j = 0, 1, . . . until convergence do

solve vHT (σ)−1T (λj+1)xj = 0 for λj+1

solve T (σ)4x = −T (λj+1)xj for 4x
update x̃j+1 := xj +4x
normalize xj+1 := 1

vH x̃j+1
x̃j+1

end for

local linear convergence to simple eigenvalues

convergence speed dependent on distance from σ to eigenvalue
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Convergence

string with elastically attached mass

smallest magnitude eigenvalue using residual inverse iteration

initial guess: σ = 0, x discrete version of function u(z) = z
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1 0.7500000000000
2 0.6119289133137
3 0.4992160868485
4 0.4602962607221
5 0.4573333718955
6 0.4573184894685
7 0.4573184889546
8 0.4573184889542
9 0.4573184889542
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Difficulties

no global convergence

can only handle one eigenvalue at a time

cannot handle multiple eigenvalues

consecutive runs may converge to the same eigenvalue

Linear eigensolvers (ARPACK, Jacobi-Davidson) exploit linear
independence of eigenvectors to prevent reconvergence.

Example (loss of linear independence for NLEVPs)

The eigenvalues 1 and 2 of([
1 1
2 0

]
+ λ

[
−1 −2
0 −3

]
+ λ2

[
1 0
0 1

])
x = 0

share the same eigenvector
[

1
1

]
.
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Several eigenvalues in the linear case

Ax = λx

Let (x1, λ1), (x2, λ2) be two eigenpairs:

Ax1 = λ1x1,

Ax2 = λ2x2.

The above equations can be merged:

A
[
x1 x2

]
=
[
x1 x2

]︸ ︷︷ ︸
=:X

[
λ1

λ2

]
︸ ︷︷ ︸

=:Λ

Hence, we have
AX = XΛ.

 X spans an invariant subspace of A.
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Generalization to the nonlinear case

f1(λ)A1x + · · ·+ fr (λ)Arx = 0

Assume r = 2 and let (x1, λ1), (x2, λ2) be two eigenpairs.

A1x1f1(λ1) + A2x1f2(λ1) = 0,

A1x2f1(λ2) + A2x2f2(λ2) = 0.

These equations can again be merged

A1

[
x1 x2

] [f1(λ1)
f1(λ2)

]
+ A2

[
x1 x2

] [f2(λ1)
f2(λ2)

]
= 0

With X =
[
x1 x2

]
and Λ = diag (λ1, λ2) as before

A1Xf1(Λ) + A2Xf2(Λ) = 0.
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Invariant pairs

Definition

(X ,Λ) ∈ Cn×m × Cm×m is called an invariant pair if

A1Xf1(Λ) + · · ·+ ArXfr (Λ) = 0.

need to exclude degenerate situations, such as X = 0

linear case: require X to have full column rank

not suitable for the nonlinear case:

X =

[
1 1
1 1

]
, Λ =

[
1

2

]
is a perfectly reasonable invariant pair of([

1 1
2 0

]
+ λ

[
−1 −2
0 −3

]
+ λ2

[
1 0
0 1

])
x = 0.
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Minimality

Definition

An invariant pair (X ,Λ) is called minimal if X
XΛ
...

XΛ`−1


has full column rank for some integer `.

The smallest such ` is called the minimality
index of (X ,Λ).

X =

[
1 1
1 1

]
, Λ =

[
1

2

]
 

[
X
XΛ

]
=


1 1
1 1
1 2
1 2
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Minimal invariant pairs

 (X ,Λ) is a minimal invariant pair with minimality index 2.

Theorem

Let (X ,Λ) be a minimal invariant pair of a nonlinear EVP

T (λ)x = 0.

Then every eigenvalue of Λ is an eigenvalue of T .
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Computation of invariant pairs

Apply Newton’s method to

T(X ,Λ) := A1Xf1(Λ) + · · ·+ ArXfr (Λ) = 0.

X ,Λ  n ·m + m2 unknowns

T(X ,Λ) = 0  n ·m constraints

We have to impose m2 additional constraints.

N(X ,Λ) := VH

 X
XΛ
...

XΛ`−1

− I = 0, V suitably chosen

Theorem

Let (X ,Λ) be a minimal invariant pair of T . The Fréchet
derivative DF of F :=

[
T
N

]
at (X ,Λ) is invertible iff the

multiplicities of Λ’s eigenvalues match those of T .
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Ongoing work: Continuation of invariant pairs

Joint project with Daniel Kressner (SAM, ETHZ)
and Wolf-Jürgen Beyn (University of Bielefeld)

Parameter-dependent nonlinear EVP

T (λ, s)x = 0

Goal: track several eigenvalues as the parameter s varies

Idea:

use invariant pair
(
X (s),Λ(s)

)
at parameter value s

as an initial guess for invariant pair at s +4s
apply Newton to obtain invariant pair

(
X (s +4s),Λ(s +4s)

)
at parameter value s +4s
repeat
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Part II:

Solution of polynomial / rational EVPs
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Linearization

Polynomial EVPs can be solved by transforming them into linear ones.

Example: (λ2M + λC + K )x = 0

introduce auxiliary variable y = λx

rewrite as λMy + Cy + Kx = 0

This can be written as a generalized linear EVP with the same eigenvalues:[
−C −K
I 0

] [
y
x

]
= λ

[
M 0
0 I

] [
y
x

]
.

linearizations not unique

could also rewrite as λMy + λCx + Kx = 0

 

[
K 0
0 I

] [
x
y

]
= λ

[
−C −M
I 0

] [
x
y

]
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Linearization II

There are entire vector spaces of linearizations (Mackey et al., 2006)!

choice of linearization depends on underlying application

structure preservation of interest

Example

The eigenvalues of an even polynomial eigenvalue problem

(λ2M + λC + K )x = 0, M = MT ,C = −CT ,K = KT

occur in pairs (λ,−λ).

If M is invertible, the symmetric / skew-symmetric linearization[
K 0
0 M

] [
x
y

]
= λ

[
−C −M
M 0

] [
x
y

]
preserves this property.
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Linearization III

linearization of polynomial EVPs of degree d > 2 analogously
by introducing the auxiliary vector

x
λx
...

λd−1x


Conclusion 1:

polynomial EVP of size n  linearized EVP of size dn

polynomial EVP has exactly dn eigenvalues (counting multiplicities)

Conclusion 2:

The extended vectors above will always be linearly independent,
even though the eigenvectors x themselves may not.
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Solution of rational EVPs

most straightforward way: multiplication by the common denominator
of all rational terms  polynomial EVP

degree of resulting polynomial EVP may be very large

sometimes smarter ways to solve rational EVPs:

Ongoing joint project with Daniel Kressner and Christian Engström
(both SAM, ETHZ)

[
G − ω2M1 − ω2

(
α +

ξ

η − ω2 − iγω

)
M2

]
u = 0

M1 + M2 is a splitting of the total mass matrix of the problem.
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Rational EVPs in electronic bandstructure computations

by suitable ordering of nodes:

M2 =

[
0

M̌2

]
∈ Rn×n

with a positive definite M̌2 ∈ Rm×m, m� n

by Cholesky decomposition:

M2 = FTF , F ∈ Rm×n

Idea (Bai & Su, 2008):

write rational term(s) in transfer function form

ω2ξ

η − ω2 − iγω
= −ξ + bT (A− ωE )−1b
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Conversion to transfer function form

by partial fraction expansion

p(ω)

q(ω)
= ζ +

σ1

ω − ρ1
+ · · ·+ σk

ω − ρk

= ζ +
( ω
σ1
− ρ1

σ1

)−1
+ · · ·+

( ω
σk
− ρk
σk

)−1

= ζ + bT (A− ωE )−1b,

where

b =

1
...
1

 , A =

−
ρ1
σ1

. . .

− ρk
σk

 , E =

−
1
σ1

. . .

− 1
σk
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Linearization of rational EVPs

EVP with rational term in transfer function form:

Ĝu − bT (A− ωE )−1bFTFu = ω2M̂u,

where Ĝ = G + ξM2, M̂ = M1 + αM2

rearrange:

bT (A− ωE )bFTF = bT (A− ωE )−1b ⊗ FTF

= BT (A− ωE)−1B

where B = b ⊗ F , A = A⊗ I , E = E ⊗ I
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Linearization of rational EVPs II

Ĝu − BT (A− ωE)−1Bu = ω2M̂u

Introducing the auxiliary variables v := −(A− ωE)−1Bu, w := ωu,
we obtain the linearized EVPĜ BT

B A
I

uv
w

 = ω

 M̂
E

I

uv
w


problem size standard lin. rational lin.

p #DoF size comp. time size comp. time

2 288 1728 262 s 720 78 s

4 720 4320 819 s 1800 321 s

6 1344 8064 1547 s 3360 727 s

8 2160 12960 – 5400 1688 s
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Summary

introduced nonlinear EVPs

showed several sample applications

discussed Newton-based technique for determining one
or several eigenpairs

demonstrated linearization techniques for polynomial
and rational EVPs

outlined two ongoing projects
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