Space-time sparse discretization of linear parabolic equations

Roman Andreev

August 21, 2010

Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-127034/1
Part of PhD thesis under the supervision of Prof. Ch. Schwab

TOC of the Talk

Intro
Variational formulation
Abstract stability results
Example of stable FE spaces
Outro

Introduction

Let $V \hookrightarrow H \cong H^{\prime} \hookrightarrow V^{\prime}$ be a Gelfand triple of separable Hilbert spaces. Consider the abstract parabolic equation in $t \in J \subset \mathbb{R}$

$$
\begin{equation*}
\partial_{t} u+A u=g, \quad u(0)=h \in H \tag{PDE}
\end{equation*}
$$

where

- $g: J \rightarrow V^{\prime}$
- $A: J \rightarrow \mathcal{L}\left(V, V^{\prime}\right)$
- $u: J \rightarrow V$
(PDE) models
- heat conduction, e.g.

$$
H_{0}^{1}(D)=V \hookrightarrow H=L^{2}(D) \cong H^{\prime} \hookrightarrow V^{\prime}=H^{-1}(D)
$$

- option pricing, etc

Introduction

Let $V \hookrightarrow H \cong H^{\prime} \hookrightarrow V^{\prime}$ be a Gelfand triple of separable Hilbert spaces. Consider the abstract parabolic equation in $t \in J \subset \mathbb{R}$

$$
\begin{equation*}
\partial_{t} u+A u=g, \quad u(0)=h \in H \tag{PDE}
\end{equation*}
$$

where

- $g: J \rightarrow V^{\prime}$
- $A: J \rightarrow \mathcal{L}\left(V, V^{\prime}\right)$
- $u: J \rightarrow V$
(PDE) models
- parametric heat conduction, e.g.

$$
L_{\pi}^{2}\left(U, H_{0}^{1}(D)\right) \hookrightarrow L_{\pi}^{2}\left(U, L^{2}(D)\right) \hookrightarrow L_{\pi}^{2}\left(U, H^{-1}(D)\right)
$$

- option pricing, etc

Introduction

Numerical solution of (PDE)

- many (adaptive, multi-level) Galerkin methods exist
- essentially variations on the "method of lines"

Issues

- compression of u as a function of "space-time"
- efficient algorithms for computing the compressed u
- provable error and complexity bounds
- design of stable finite element spaces*
does not arise in the adaptive wavelet method [SS09]

Introduction

Numerical solution of (PDE)

- many (adaptive, multi-level) Galerkin methods exist
- essentially variations on the "method of lines"

Issues

- compression of u as a function of "space-time"
- efficient algorithms for computing the compressed u
- provable error and complexity bounds
- design of stable finite element spaces*
* does not arise in the adaptive wavelet method [SS09]

References I

```
hp-dG and -cG time-stepping
```

[BJ90] Ivo Babuška and Tadeusz Janik, "The h-p Version of the Finite Element Method for Parabolic Equations. II", Numerical Methods for PDEs, 6, no. 4, 343-369, 1990
[Sch99] Dominik Schötzau, "hp-DGFEM for Parabolic Evolution Problems", Diss. ETH No. 13041, 1999
[SW10] Dominik Schötzau and Thomas P. Wihler, "A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations ", Numerische Mathematik, 115, no. 3, 475-509, 2010
[HS10] Viet Ha Hoang and Christoph Schwab, "Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs. I: Analytic regularity and gpc-approximation", SAM Report 2010-11, 2010

References II

Truly space-time wavelet methods

[GO07] Michael Griebel and Daniel Oeltz, "A sparse grid space-time discretization scheme for parabolic problems", Computing, 81, no. 1, 1-34, 2007
[SS09] Christoph Schwab and Rob Stevenson, "Space-time adaptive wavelet methods for parabolic evolution problems", Mathematics of Computation, 78, no. 267, 1293-1318, 2009
[CS10] Rob Stevenson and Nabi Chegini, "Adaptive wavelet methods for solving operator equations: parabolic problems", KdV report, 2010
[A10] R.A., "Space-time wavelet FEM for parabolic problems", submitted

Introduction - continued

Class of stable FE spaces: key steps

- variational formulation of (PDE) in space-time
- test space suitably finer than ansatz space (generic)
- anisotropic (tensor product) wavelets in space-time
- sparse tensor product spaces in space-time
- derivation of a non-square (overdetermined) linear system
- corresponding normal equations are well-conditioned
- iterative solution (= residual minimization)

Variational formulation

The variational formulation, based on the bilinear form

$$
\begin{aligned}
& b: \underbrace{L^{2}(J ; V) \cap H^{1}\left(J ; V^{\prime}\right)}_{\mathcal{U}} \times \underbrace{L^{2}(J ; V) \times H}_{\mathcal{V}=\mathcal{V}_{1} \times \mathcal{V}_{2}} \rightarrow \mathbb{R} \\
& b(u, v)=\int_{J}\left\langle\partial_{t} u+A u, v_{1}\right\rangle_{V^{\prime} \times v} \mathrm{~d} t+\left\langle u(0), v_{2}\right\rangle_{H}
\end{aligned}
$$

and the linear functional

$$
f: \underbrace{L^{2}(J ; V) \times H}_{\mathcal{V}=\mathcal{V}_{1} \times V_{2}} \rightarrow \mathbb{R}, \quad f(v)=\int_{J}\left\langle g, v_{1}\right\rangle_{v^{\prime} \times v} \mathrm{~d} t+\left\langle h, v_{2}\right\rangle_{H},
$$

reads: find $u \in \mathcal{U}$ s.t.

$$
b(u, v)=f(v) \quad \forall v \in \mathcal{V}
$$

Variational formulation

Assume $\exists \alpha>0, c \in \mathbb{R}$ s.t. $\forall \zeta, \eta \in V$:

- $\sup _{t \in J}\|A(t)\|_{\mathcal{L}\left(V, V^{\prime}\right)}<\infty$
- $J \ni t \mapsto\langle A(t) \zeta, \eta\rangle_{V^{\prime} \times v}$ measurable
- $\langle\boldsymbol{A}(t) \eta, \eta\rangle_{V^{\prime} \times V}+\boldsymbol{c}\|\eta\|_{H}^{2} \geq \alpha\|\eta\|_{V}^{2}$ for all $t \in J$ and
- $g \in L^{2}\left(J ; V^{\prime}\right)$
- $h \in H$.

Then " $b(u, \cdot)=f(\cdot)$ " is well-posed [SS09]. In particular,

$$
\inf _{u \in \mathcal{U} \backslash\{0\}} \sup _{v \in \mathcal{V} \backslash\{0\}} \frac{b(u, v)}{\|u\|_{\mathcal{U}}\|v\|_{\mathcal{V}}}>0
$$

Below assume: $c=0$ and $A=A^{\prime}$ but not $A^{-1}(t) \in K\left(V^{\prime}, V\right)$

Abstract stability result

Theorem
Let $\mathcal{R} \subseteq \mathcal{U}$ and $\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2} \subseteq \mathcal{V}_{1} \times \mathcal{V}_{2}=\mathcal{V}$ be subspaces. Assume

- there exists $\mathcal{K}\left(\mathcal{S}_{1}\right)>0$ such that

$$
\forall z^{\prime} \in \mathcal{S}_{1}: \quad\left|z^{\prime}\right|_{\mathcal{S}_{1}^{\prime}}:=\sup _{z \in \mathcal{S}_{1} \backslash\{0\}} \frac{\left\langle z^{\prime}, z\right\rangle_{\mathcal{V}_{1}^{\prime} \times \mathcal{V}_{1}}}{\|z\|_{\nu_{1}}} \geq \mathcal{K}\left(\mathcal{S}_{1}\right)\left\|z^{\prime}\right\| \nu_{\nu_{1}^{\prime}}
$$

- $\mathcal{R} \subseteq \mathcal{S}_{1}$ and $\partial_{t} \mathcal{R} \subseteq \mathcal{S}_{1}$
- $\left.\mathcal{R}\right|_{t=0}=\{u(t=0) \in H: u \in \mathcal{R}\} \subseteq \mathcal{S}_{2}$

Then: $\exists \gamma>0$, only dependent on $\mathcal{K}\left(\mathcal{S}_{1}\right)$ and A, such that

$$
\inf _{u \in \mathcal{R} \backslash\{0\}} \sup _{v \in \mathcal{S} \backslash\{0\}} \frac{b(u, v)}{\|u\|_{u}\|v\|_{v}} \geq \gamma>0 .
$$

Abstract stability result

Btw:

$$
\forall z^{\prime} \in \mathcal{S}_{1}: \quad\left|z^{\prime}\right|_{\mathcal{S}_{1}^{\prime}}:=\sup _{z \in \mathcal{S}_{1} \backslash\{0\}} \frac{\left\langle z^{\prime}, z\right\rangle_{\mathcal{V}_{1}^{\prime} \times \mathcal{V}_{1}}}{\|z\|_{\mathcal{V}_{1}}} \geq \mathcal{K}\left(\mathcal{S}_{1}\right)\left\|z^{\prime}\right\| \nu_{\nu_{1}^{\prime}}
$$

is equivalent to

$$
\inf _{z^{\prime} \in \mathcal{S}_{1} \backslash\{0\}} \sup _{z \in \mathcal{S}_{1} \backslash\{0\}} \frac{\left\langle z^{\prime}, z\right\rangle_{\nu_{1}^{\prime} \times \mathcal{V}_{1}}}{\left\|z^{\prime}\right\| \nu_{\mathcal{L}_{1}^{\prime}}\|z\|_{\mathcal{V}_{1}}} \geq \mathcal{K}\left(\mathcal{S}_{1}\right)
$$

Abstract stability result

Proof, step I

- Let $u \in \mathcal{R}$.
- Set $\mathcal{Z}:=\mathcal{V}_{1}=L^{2}(J ; V)$ with $\|\cdot\|_{\mathcal{Z}}=\langle\cdot, \cdot\rangle_{\mathcal{Z}}^{1 / 2}$,

$$
\langle z, \widetilde{z}\rangle_{\mathcal{Z}}=\int_{J}\langle A z, \widetilde{z}\rangle_{V^{\prime} \times v} \quad \forall z, \widetilde{z} \in \mathcal{Z}
$$

Note: $\|\cdot\|_{\mathcal{Z}} \sim\|\cdot\|_{L^{2}(J ; V)}=:\|\cdot\|_{\mathcal{V}_{1}}$ and $u \in \mathcal{R} \subseteq \mathcal{S}_{1} \subseteq \mathcal{Z}$.

- Define $v_{2}:=u(0) \in H$ and $v_{1} \in \mathcal{S}_{1}$ by

$$
\left\langle v_{1}, \widetilde{v}_{1}\right\rangle_{\mathcal{Z}}=\int_{J}\left\langle\partial_{t} u+A u, \widetilde{v}_{1}\right\rangle_{v^{\prime} \times v} \quad \forall \widetilde{v}_{1} \in \mathcal{S}_{1} .
$$

Abstract stability result

Proof, step II

- choosing $\widetilde{v}_{1}=v_{1}$ yields fact 1

$$
\begin{aligned}
b\left(u,\left(v_{1}, v_{2}\right)\right) & =\int_{J}\left\langle\partial_{t} u+A u, v_{1}\right\rangle_{v^{\prime} \times v}+\left\langle u(0), v_{2}\right\rangle_{H} \\
& =\left\langle v_{1}, v_{1}\right\rangle_{\mathcal{Z}}+\left\langle u(0), v_{2}\right\rangle_{H} \\
& =\left\|v_{1}\right\|_{\mathcal{Z}}^{2}+\left\|v_{2}\right\|_{\mathcal{V}_{2}}^{2}
\end{aligned}
$$

- choosing $\widetilde{v}_{1}=u$ yields fact 2

$$
\begin{aligned}
\left\langle v_{1}, u\right\rangle_{\mathcal{Z}} & =\int_{J}\left\langle\partial_{t} u+A u, u\right\rangle_{V^{\prime} \times V} \\
& =\int_{J}\langle A u, u\rangle_{V^{\prime} \times V}+\int_{J}\left\langle\partial_{t} u, u\right\rangle_{V^{\prime} \times V} \\
& =\|u\|_{\mathcal{Z}}^{2}+\frac{1}{2}\left(\|u(T)\|_{H}^{2}-\|u(0)\|_{H}^{2}\right)
\end{aligned}
$$

Abstract stability result

Proof, step III

Using $\partial_{t} u \in \partial_{t} \mathcal{R} \subseteq \mathcal{S}_{1}$ we obtain fact 3

$$
\begin{aligned}
\mathcal{K}\left(\mathcal{S}_{1}\right)\left\|\partial_{t} u\right\|_{\mathcal{V}_{1}^{\prime}} \leq\left|\partial_{t} u\right|_{\mathcal{S}_{1}^{\prime}} & =\sup _{\widetilde{v}_{1} \in \mathcal{S}_{1} \backslash\{0\}} \frac{\left\langle\partial_{t} u, \widetilde{v}_{1}\right\rangle_{\nu_{1}^{\prime} \times \mathcal{V}_{1}}}{\left\|\widetilde{v}_{1}\right\| \mathcal{V}_{1}} \\
& =\sup _{\widetilde{v}_{1} \in \mathcal{S}_{1} \backslash\{0\}} \frac{\int_{\mathcal{J}}\left\langle\partial_{t} u+A u-A u, \widetilde{v}_{1}\right\rangle_{V^{\prime} \times V}}{\left\|\widetilde{v}_{1}\right\| \nu_{1}} \\
& =\sup _{\widetilde{v}_{1} \in \mathcal{S}_{1} \backslash\{0\}} \frac{\left\langle v_{1}, \widetilde{v}_{1}\right\rangle_{\mathcal{Z}}-\left\langle u, \widetilde{v}_{1}\right\rangle_{\mathcal{Z}}}{\left\|\widetilde{v}_{1}\right\| \mathcal{V}_{1}} \\
& =\sup _{\widetilde{v}_{1} \in \mathcal{S}_{1} \backslash\{0\}} \frac{\left\langle v_{1}-u, \widetilde{v}_{1}\right\rangle_{\mathcal{Z}}}{\left\|\widetilde{v}_{1}\right\| \mathcal{Z}} \frac{\left\|\widetilde{v}_{1}\right\|_{\mathcal{Z}}}{\left\|\widetilde{v}_{1}\right\| \mathcal{V}_{1}} \\
& \leq\left\|v_{1}-u\right\|_{\mathcal{Z}}\|\operatorname{Id}\|_{\mathcal{L}\left(\mathcal{V}_{1}, \mathcal{Z}\right)}
\end{aligned}
$$

with $\|\operatorname{Id}\|_{\mathcal{L}\left(\mathcal{V}_{1}, \mathcal{Z}\right)}=\operatorname{ess} \sup _{t \in J}\|A(t)\|_{\mathcal{L}\left(V, V^{\prime}\right)}^{1 / 2}$.

Abstract stability result

Proof, wrap up

We obtain

$$
\begin{aligned}
b\left(u,\left(v_{1}, v_{2}\right)\right) & \stackrel{1}{=}\left\|v_{1}\right\|_{Z}^{2}+\left\|v_{2}\right\|_{v_{2}}^{2} \geq\left\|v_{1}\right\|_{\mathcal{Z}}^{2}+\|u(0)\|_{H}^{2}-\|u(T)\|_{H}^{2} \\
& \stackrel{2}{=}\left\|v_{1}-u\right\|_{\mathcal{Z}}^{2}+\|u\|_{Z}^{2} \\
& \stackrel{3}{\geq} \tilde{\gamma}^{2}\left(\left\|\partial_{t} u\right\|_{\nu_{1}^{\prime}}^{2}+\|u\|_{\mathcal{Z}}^{2}\right)
\end{aligned}
$$

with $\tilde{\gamma}=\min \left\{\mathcal{K}\left(\mathcal{S}_{1}\right)| | \operatorname{Id} \|_{\mathcal{L}\left(\mathcal{V}_{1}, \mathcal{Z}\right)}^{-1}, 1\right\}$, and thus

$$
\begin{aligned}
b\left(u,\left(v_{1}, v_{2}\right)\right) & \geq \tilde{\gamma} \sqrt{\left\|\partial_{t} u\right\|_{L^{2}\left(J ; V^{\prime}\right)}^{2}+\|u\|_{\mathcal{Z}}^{2}} \sqrt{\left\|v_{1}\right\|_{\mathcal{Z}}^{2}+\left\|v_{2}\right\|_{\mathcal{V}_{2}}^{2}} \\
& \geq \gamma\|u\|_{L^{2}(J ; V) \cap H^{1}\left(J ; V^{\prime}\right)}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{2}(J ; V) \times H}
\end{aligned}
$$

with $\gamma \sim \widetilde{\gamma}$.

Abstract stability result

Assumptions on $\mathcal{R} \subseteq \mathcal{U}$ and $\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2} \subseteq \mathcal{V}_{1} \times \mathcal{V}_{2}=\mathcal{V}$

- there exists $\mathcal{K}\left(\mathcal{S}_{1}\right)>0$ such that

$$
\inf _{z^{\prime} \in \mathcal{S}_{1} \backslash\{0\}} \sup _{z \in \mathcal{S}_{\mathcal{S}} \backslash\{0\}} \frac{\left\langle z^{\prime}, z\right\rangle_{\mathcal{V}_{1}^{\prime} \times \mathcal{V}_{1}}}{\left\|z^{\prime}\right\|_{\mathcal{V}_{1}^{\prime}}\|z\|_{\mathcal{V}_{1}}} \geq \mathcal{K}\left(\mathcal{S}_{1}\right)
$$

- $\mathcal{R} \subseteq \mathcal{S}_{1}$ and $\partial_{t} \mathcal{R} \subseteq \mathcal{S}_{1}$
- $\left.\mathcal{R}\right|_{t=0}=\{u(t=0) \in H: u \in \mathcal{R}\} \subseteq \mathcal{S}_{2}$
can be relaxed (numerics below).

On condition $\mathcal{K}\left(\mathcal{S}_{1}\right)>0$

Assume

- $S_{1} \subseteq V$ satisfies

$$
\inf _{s^{\prime} \in S_{1} \backslash\{0\}} \sup _{s \in S_{1} \backslash\{0\}} \frac{\left\langle s^{\prime}, \boldsymbol{s}\right\rangle_{V^{\prime} \times V}}{\left\|s^{\prime}\right\| V^{\prime}\|\boldsymbol{s}\| V} \geq \kappa\left(S_{1}\right)>0
$$

- similarly $\kappa\left(\widetilde{S}_{1}\right)>0$ for $\widetilde{S}_{1} \subseteq V$
- subspaces $E, \widetilde{E} \subseteq L^{2}(J)$ are orthogonal in $L^{2}(J)$

Then $\mathcal{S}_{1}:=\left(E \otimes S_{1}\right)+\left(\widetilde{E} \otimes \widetilde{S}_{1}\right) \subseteq L^{2}(J ; V)$ satisfies

$$
\mathcal{K}\left(\mathcal{S}_{1}\right) \geq \inf \left\{\kappa\left(S_{1}\right), \kappa\left(\widetilde{S}_{1}\right)\right\}>0
$$

Note: generalizes to $E, \widetilde{E}, \ldots \subseteq L^{2}(J)$.

On condition $\mathcal{K}\left(\mathcal{S}_{1}\right)>0$

Proof of Lemma: $\operatorname{dim} E=\operatorname{dim} \widetilde{E}=1$
Let $v \in \mathcal{S}$ and $\widetilde{v} \in \widetilde{\mathcal{S}}$ (subscripts omitted). Let $E=\operatorname{span}\{e\}$ and $\widetilde{E}=\operatorname{span}\{\widetilde{e}\}, v=\boldsymbol{e} \otimes s$ and $\widetilde{v}=\widetilde{e} \otimes \widetilde{s}$. By assumption, $\exists s^{\prime} \in S$:

- $\kappa(S)\left\|s^{\prime}\right\| v^{\prime}\|s\|_{V} \leq\left\langle s^{\prime}, \boldsymbol{s}\right\rangle_{V^{\prime} \times V}$
- w.l.o.g. $\left\|s^{\prime}\right\|_{v^{\prime}}=\|s\|_{v}$
and similarly for some $\widetilde{s}^{\prime} \in \widetilde{S}$. Therefore, $v^{\prime}:=e \otimes s^{\prime}$ and $\widetilde{V}^{\prime}:=\widetilde{e} \otimes \widetilde{s}^{\prime}$ are orthogonal in \mathcal{V} and \mathcal{V}^{\prime}, and moreover

$$
\begin{aligned}
\left\|v^{\prime}+\widetilde{v}^{\prime}\right\| \mathcal{V}^{\prime}\|v+\widetilde{v}\|_{\mathcal{V}} & =\sqrt{\left\|\boldsymbol{v}^{\prime}\right\|_{\mathcal{V}^{\prime}}^{2}+\left\|{\widetilde{V^{\prime}}}^{\prime}\right\|_{\mathcal{V}^{\prime}}^{2}} \sqrt{\|v\|_{\mathcal{V}}^{2}+\|\widetilde{v}\|_{\mathcal{V}}^{2}} \\
& =\sqrt{\left\|\boldsymbol{S}^{\prime}\right\|_{V^{\prime}}^{2}+\left\|{\widetilde{S^{\prime}}}^{\prime}\right\|_{V^{\prime}}^{2}} \sqrt{\|\boldsymbol{S}\|_{V}^{2}+\|\widetilde{s}\|_{V}^{2}} \\
& =\left\|\boldsymbol{s}^{\prime}\right\| V_{V^{\prime}}\|\boldsymbol{S}\|_{V}+\left\|\widetilde{\boldsymbol{S}}^{\prime}\right\| V^{\prime}\|\widetilde{S}\|_{V} \\
& \leq \kappa(S)^{-1}\left\langle v^{\prime}, v\right\rangle_{\mathcal{V}^{\prime} \times \mathcal{V}}+\kappa(\widetilde{S})^{-1}\left\langle\widetilde{v}^{\prime}, \widetilde{v}\right\rangle_{\mathcal{V}^{\prime} \times \mathcal{V}} \\
& \leq \max \left\{\kappa(S)^{-1}, \kappa(\widetilde{S})^{-1}\right\}\left\langle v^{\prime}+\widetilde{v}^{\prime}, v+\widetilde{v}\right\rangle_{\mathcal{V}^{\prime} \times \mathcal{V}}
\end{aligned}
$$

On condition $\mathcal{K}\left(\mathcal{S}_{1}\right)>0$

Application of Lemma

Assume

- closed subspaces $E^{(0)} \subseteq E^{(1)} \subseteq \ldots \subseteq L^{2}(J)$
- closed subspaces $S_{1}^{(0)} \subseteq S_{1}^{(1)} \subseteq \ldots \subseteq V$
- $\kappa\left(S_{1}^{(\ell)}\right) \geq \kappa>0$ for all $\ell \geq 0$.

Then for each $L \geq 0$ there holds

$$
\mathcal{K}\left(\sum_{\ell=0}^{L} E^{(\ell)} \otimes S_{1}^{(L-\ell)}\right) \geq \kappa>0
$$

Proof: using $F^{(\ell)}:=\left(E^{(\ell-1)}\right)^{\perp L^{2}(J)} \cap E^{(\ell)}, \ell \geq 1$ and $F^{(0)}:=E^{(0)}$,

$$
\sum_{\ell=0}^{L} E^{(\ell)} \otimes S_{1}^{(L-\ell)}=\sum_{\ell=0}^{L}\left(E^{(\ell-1)}+F^{(\ell)}\right) \otimes S_{1}^{(L-\ell)}=\sum_{\ell=0}^{L} F^{(\ell)} \otimes S_{1}^{(L-\ell)}
$$

Example

List of symbols

- Time interval $J=(0, T) \subset \subset \mathbb{R}$
- Open Lipschitz domain $D \subset \subset \mathbb{R}^{d}, d \geq 1$
- $H_{0}^{1}(D)=V \hookrightarrow H=L^{2}(D) \cong H^{\prime} \hookrightarrow V^{\prime}=H^{-1}(D)$
- Initial datum $h \in L^{2}(D)$
- Source term $g \in L^{2}\left(J, H^{-1}(D)\right)$
- Conductivity $q \in L^{\infty}(D \times J)$ uniformly positive,

$$
0<a_{\min } \leq \underset{D \times J}{\operatorname{essinf}} q \leq \underset{D \times J}{\operatorname{esssup}} q \leq a_{\max }<\infty
$$

Example

(PDE) in strong form

Find $u: D \times J \rightarrow \mathbb{R}$ such that

$$
\partial_{t} u(x, t)-\nabla \cdot(q(x, t) \nabla u(x, t))=g(x, t), \quad(x, t) \in D \times J
$$

with initial condition

$$
u(x, 0)=h(x), \quad x \in D
$$

and boundary condition

$$
u(x, t)=0, \quad(x, t) \in \partial D \times J
$$

Example

(PDE) in weak form

Find $u \in \mathcal{U}=L^{2}\left(J, H_{0}^{1}(D)\right) \cap H^{1}\left(J, H^{-1}(D)\right)$ such that

$$
\int_{J} \int_{D}\left(v_{1} \partial_{t} u+q \nabla u \cdot \nabla v_{1}\right) \mathrm{d} x \mathrm{~d} t=\int_{J} \int_{D} g v_{1} \mathrm{~d} x \mathrm{~d} t
$$

and

$$
\int_{D} u(0) v_{2} \mathrm{~d} x=\int_{D} h v_{2} \mathrm{~d} x
$$

for all $v=\left(v_{1}, v_{2}\right) \in \mathcal{V}=L^{2}\left(J, H_{0}^{1}(D)\right) \times L^{2}(D)$,
where q, u, v_{1}, g depend on (x, t), and $u(0), h, v_{2}$ on x

Example

(PDE) in weak form

With bilin. form $b: \mathcal{U} \times \mathcal{V} \rightarrow \mathbb{R}$ and lin. functional $f: \mathcal{V} \rightarrow \mathbb{R}$,

$$
b(u, v)=\int_{J} \int_{D}\left(v_{1} \partial_{t} u+q \nabla u \cdot \nabla v_{1}\right) \mathrm{d} x \mathrm{~d} t+\int_{D} u(0) v_{2} \mathrm{~d} x
$$

and

$$
f(v)=\int_{J} \int_{D} g v_{1} \mathrm{~d} x \mathrm{~d} t+\int_{D} h v_{2} \mathrm{~d} x,
$$

the variational formulation reads: find

$$
u \in \mathcal{U}: \quad b(u, v)=f(v) \quad \forall v \in \mathcal{V}
$$

Example

Choice of temporal basis

$$
\text { Let } \Theta_{L}=\left\{\theta_{\lambda}: \lambda \in \mathcal{I}_{\Theta}:|\lambda| \leq L\right\} \subset L^{2}(J) \text { be }
$$

- a Riesz basis for its span uniformly in level $L \geq 0$:

$$
\left\|\Theta_{L}^{\top} \mathbf{c}\right\|_{L^{2}(J)} \sim\|\mathbf{c}\|_{2} \quad \forall \mathbf{c} \in \mathbb{R}^{\# \Theta_{L}}
$$

- defined w.r.t. an equidistant partition of $J=(0, T)$ with width $h \sim 2^{-L}$
- piecewise linear continuous
- s.t. $\bigcup_{\ell \geq 0} \Theta_{\ell}$ rescales to a Riesz basis for $H^{1}(J)$

Figure: Piecewise linear continuous biorthogonal B-spline wavelets

Example

Choice of spatial basis

Let $\Sigma_{L}=\left\{\sigma_{\mu}: \mu \in \mathcal{I}_{\Sigma}:|\mu| \leq L\right\} \subset L^{2}(D)$ be

- a Riesz basis for its span uniformly in level $L \geq 0$
- defined w.r.t. a sequence of quasi-uniform nested triangulations of $D \subset \mathbb{R}^{d}$ with mesh width $h \sim 2^{-L}$
- s.t. $\bigcup_{\ell \geq 0} \Sigma_{\ell}$ rescales to a Riesz basis for $H_{0}^{1}(D)$
- (s.t. $\bigcup_{\ell \geq 0} \Sigma_{\ell}$ rescales to a Riesz basis for $H^{-1}(D)$)

Example

Choice of ansatz/test spaces I

Define full tensor product

- ansatz space $R_{L} \subset \mathcal{U}$ spanned by

$$
\left\{\theta_{\lambda} \otimes \sigma_{\mu}:|\lambda| \leq L,|\mu| \leq \rho L\right\}
$$

- test space $S_{L} \subset \mathcal{V}$ spanned by

$$
\left\{\theta_{\lambda} \otimes \sigma_{\mu}:|\lambda| \leq L+1,|\mu| \leq \rho L\right\} \times\left\{\sigma_{\mu}:|\mu| \leq \rho L\right\}
$$

where $\rho>0$ is the degree of anisotropy in the refinement

Example

Choice of ansatz/test spaces II

Define sparse tensor product

- ansatz space $R_{L} \subset \mathcal{U}$ spanned by

$$
\left\{\theta_{\lambda} \otimes \sigma_{\mu}:|\lambda|+\rho^{-1}|\mu| \leq L\right\}
$$

- test space $S_{L} \subset \mathcal{V}$ spanned by

$$
\left\{\theta_{\lambda} \otimes \sigma_{\mu}: \min \{|\lambda|-1,0\}+\rho^{-1}|\mu| \leq L\right\} \times\left\{\sigma_{\mu}:|\mu| \leq \rho L\right\}
$$

where $\rho>0$ is the degree of anisotropy in the refinement

Example

Formulation via residual minimization (FTP case)

The discrete version of the variational formulation: find

$$
\widetilde{u}_{L}:=\underset{w \in R_{L}}{\arg \min } \max _{v \in S_{L} \backslash\{0\}} \frac{|b(w, v)-f(v)|}{\|v\|_{\mathcal{V}}}
$$

motivates, via Riesz bases $\bigcup_{\ell \geq 0} \Theta_{\ell}$ and $\bigcup_{\ell \geq 0} \Sigma_{\ell}$, the definition

$$
\mathbf{u}_{L}:=\underset{\mathbf{w} \in \mathbb{R}^{\operatorname{dim} R_{L}}}{\arg \min }\left\|\mathbf{B}_{L} \mathbf{w}-\mathbf{f}_{L}\right\|_{2}
$$

which defines $u_{L}=\left[\Theta_{L} \otimes \Sigma_{L}\right]^{\top} \mathbf{u}_{L} \in R_{L}$. In general $u_{L} \neq \widetilde{u}_{L}$.

Example

Formulation via residual minimization (FTP case)

The discrete version of the variational formulation: find

$$
\widetilde{u}_{L}:=\underset{w \in R_{L}}{\arg \min _{v \in S_{L} \backslash\{0\}}} \max \frac{|b(w, v)-f(v)|}{\|v\|_{V}}
$$

motivates, via Riesz bases $\bigcup_{\ell \geq 0} \Theta_{\ell}$ and $\bigcup_{\ell \geq 0} \Sigma_{\ell}$, the definition

$$
\begin{equation*}
\mathbf{u}_{L}:=\underset{\mathbf{w} \in \mathbb{\operatorname { d i m }} \dot{R}_{L}}{\arg \min }\left\|\mathbf{B}_{L} \mathbf{w}-\mathbf{f}_{L}\right\|_{2} \tag{argmin}
\end{equation*}
$$

which defines $u_{L}=\left[\theta_{L} \otimes \Sigma_{L}\right]^{\top} u_{L} \in R_{L}$. In general $u_{L} \neq \widetilde{u}_{L}$.

Example

Formulation via residual minimization (FTP case)

The discrete version of the variational formulation: find

$$
\widetilde{u}_{L}:=\underset{w \in R_{L}}{\arg \min } \max _{v \in S_{L} \backslash\{0\}} \frac{|b(w, v)-f(v)|}{\|v\|_{\mathcal{V}}}
$$

motivates, via Riesz bases $\bigcup_{\ell \geq 0} \Theta_{\ell}$ and $\bigcup_{\ell \geq 0} \Sigma_{\ell}$, the definition

$$
\begin{equation*}
\mathbf{u}_{L}:=\underset{\mathbf{w} \in \mathbb{R}^{\operatorname{dim}} R_{L}}{\arg \min }\left\|\mathbf{B}_{L} \mathbf{w}-\mathbf{f}_{L}\right\|_{2} \tag{argmin}
\end{equation*}
$$

which defines $u_{L}=\left[\Theta_{L} \otimes \Sigma_{L}\right]^{\top} \mathbf{u}_{L} \in R_{L}$. In general $u_{L} \neq \widetilde{u}_{L}$.

Example

Formulation via residual minimization (FTP case)

The discrete version of the variational formulation: find

$$
\widetilde{u}_{L}:=\underset{w \in R_{L}}{\arg \min } \max _{v \in S_{L} \backslash\{0\}} \frac{|b(w, v)-f(v)|}{\|v\|_{\mathcal{V}}}
$$

motivates, via Riesz bases $\bigcup_{\ell \geq 0} \Theta_{\ell}$ and $\bigcup_{\ell \geq 0} \Sigma_{\ell}$, the definition

$$
\begin{equation*}
\mathbf{u}_{L}:=\underset{\mathbf{w} \in \mathbb{R}^{\operatorname{dim}} R_{L}}{\arg \min }\left\|\mathbf{B}_{L} \mathbf{w}-\mathbf{f}_{L}\right\|_{2} \tag{argmin}
\end{equation*}
$$

which defines $u_{L}=\left[\Theta_{L} \otimes \Sigma_{L}\right]^{\top} \mathbf{u}_{L} \in R_{L}$. In general $u_{L} \neq \widetilde{u}_{L}$.

Example

Quasi-optimality

Theorem

The least-squares Galerkin solution u_{L} exists, is unique and converges quasi-optimally uniformly in $L \geq 0$: there exists $C>0$ such that $\forall L \geq 0$

$$
\left\|u_{L}-u\right\|_{\mathcal{U}} \leq C \inf _{w_{L} \in R_{L}}\left\|w_{L}-u\right\|_{\mathcal{U}} .
$$

Example

Numerics I - smooth solution, FTP

Experimental set-up

- $D=(-1,1) \subset \mathbb{R}, J=(0, T)$ with $T=2$
- conductivity in (PDE) is $q \equiv 1$
- exact solution

$$
u(x, t)=e^{-t} \cos \frac{x \pi}{2}, \quad(x, t) \in D \times J
$$

- piecewise linear continuous B-spline wavelet basis
- degree of anisotropy in refinement $\rho=1$

Example

Numerics I - smooth solution, FTP

Figure: Convergence of the Galerkin solution u_{L} to a smooth u

Example

Numerics I - smooth solution, FTP

The system (argmin) is

- sparse
- well-conditioned
which suggests the use of an iterative least squares algorithm ${ }^{1}$

Level L	1	2	\cdots	5	6	7
ndof +1	2^{4}	2^{6}	\cdots	2^{12}	2^{14}	2^{16}
\# iterations	11	41	\cdots	315	442	574
$\log _{10}$ rel. res.	-1.51	-2.08	\cdots	-3.54	-4.02	-4.5

Table: The number of MATLAB's lsqr iterations with tolerance 10^{-10}, the corresponding number of degrees of freedom, and the relative residual on various discretization levels L for u_{L}

[^0]
Example

Numerics II - rough solution, FTP

Experimental set-up

- $D=(-1,1) \subset \mathbb{R}, J=(0, T)$ with $T=2$
- source $g \equiv 1$, initial condition $h \equiv 0$
- conductivity in (PDE) is $q(x, t)=1-\frac{1}{2} \operatorname{sign}(2+x-2 t)$
- piecewise linear continuous B-spline wavelet basis
- degree of anisotropy in refinement $\rho=1$
- reference solution on level $L=7$

Figure: Conductivity q

Example

Numerics II - rough solution, FTP

Figure: Convergence ${ }^{2}$ of the Galerkin solution u_{L} to u_{7}

$$
{ }^{2} \mathcal{X} \equiv \mathcal{U}
$$

Example

Numerics III - FTP vs STP

Experimental set-up

- $D=(-1,1) \subset \mathbb{R}, J=(0, T)$ with $T=2$
- conductivity $q \equiv 1$, initial condition $h \equiv 0$
- source $g(x, t)=\cos \left(x+\cos \frac{\pi t}{2}\right) \sin ^{2} \frac{\pi t}{2}$
- piecewise linear continuous B-spline wavelet basis
- degree of anisotropy in refinement $\rho=1$
- reference FTP solution on level $L=7$

Figure: Source g (left) and solution u (right)

Example

Numerics III - FTP vs STP

Figure: Convergence ${ }^{3}$ of the Galerkin solution: STP vs FTP

$$
{ }^{3} \mathcal{X} \equiv \mathcal{U}
$$

Outro

Review

- sparse tensor formulation of (PDE) in space-time
- inf-sup condition for the associated bilinear form
- quasi-optimality of the Galerkin least squares solution
- examples

In progress

- sparse discretization of parametric parabolic equations
- weighted spaces for corners of the space-time cylinder

Thank You!

[^0]: ${ }^{1}$ Paige and Saunders, SIAM J. Numer. Anal, 12, 1975

