The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media

Monika Weymuth

Universität Zürich, Institut für Mathematik
joint work with Stefan Sauter

Pro*Doc Retreat Disentis, 13-15th August 2014
(1) Introduction
(2) Definition of the Method
(3) Error Analysis
(4) $W^{1, p}$-Regularity of Poisson Problem with L^{∞}-Coefficient

Problem Formulation

$\Omega \subset \mathbb{R}^{2}$ a bounded Lipschitz domain with piecewise analytic boundary
For a given function $f \in L^{2}(\Omega)$, we are seeking $u \in H_{0}^{1}(\Omega)$ such that

$$
a(u, v):=\int_{\Omega}\langle A \nabla u, \nabla v\rangle=\int_{\Omega} f v=: F(v) \quad \forall v \in H_{0}^{1}(\Omega) .
$$

The diffusion matrix $A \in L^{\infty}\left(\Omega, \mathbb{R}_{\text {sym }}^{2 \times 2}\right)$ is uniformly elliptic, i.e.

$$
\begin{aligned}
0<\alpha(A, \Omega) & :=\underset{x \in \Omega}{\operatorname{ess} \inf } \inf _{v \in \mathbb{R}^{2} \backslash\{0\}} \frac{\langle A(x) v, v\rangle}{\langle v, v\rangle} \\
\infty & >\beta(A, \Omega):=\underset{x \in \Omega}{\operatorname{ess} \sup } \sup _{v \in \mathbb{R}^{2} \backslash\{0\}} \frac{\langle A(x) v, v\rangle}{\langle v, v\rangle} .
\end{aligned}
$$

Partition of Unity Finite Element Method (PUM)

(1) Let $\omega_{1}, \ldots, \omega_{N}$ be open sets satisfying

- $\Omega=\bigcup_{i=1}^{N} \omega_{i}$
- $\exists M \in \mathbb{N}$ s.t. $\forall x \in \Omega$ we have $\#\left\{i \mid x \in \omega_{i}\right\} \leq M$
(2) Construct local approximation spaces V_{i}, i.e. on each patch ω_{i} let $\left.V_{i} \subset H_{0}^{1}(\Omega)\right|_{\omega_{i}}$ be a space of functions by which the solution $\left.u\right|_{\omega_{i}}$ can be approximated well.
(3) Choose partition of unity functions $\left(\varphi_{i}\right)_{i=1}^{N}$ such that
$-\operatorname{supp} \varphi_{i} \subset \overline{\omega_{i}}$
- $\sum_{i} \varphi_{i}=1$ on Ω
- $\left\|\varphi_{i}\right\|_{L^{\infty}(\Omega)} \leq C$
- $\left\|\nabla \varphi_{i}\right\|_{L^{\infty}(\Omega)} \leq \frac{C}{\operatorname{diam} \omega_{i}}$
(9) Define the global finite element space V by

$$
V:=\sum_{i} \varphi_{i} V_{i}
$$

Properties of PUM and Potential Applications

- A priori knowledge of the problem under consideration can be incorporated in the construction of the local approximation spaces.
- The global space V inherits the approximation properties of the local spaces V_{i}, i.e. the function u can be approximated on Ω by functions of V as well as the functions $\left.u\right|_{\omega_{i}}$ can be approximated in the local spaces V_{i}.
- V inherits the smoothness of the partition of unity $\left(\varphi_{i}\right)_{i=1}^{N}$. In particular, the smoothness of the partition of unity enforces the conformity of the global space V.

Potential Applications:

problems where the solution is rough or highly oscillatory, e.g. elasticity equations for laminated materials, heterogeneous materials, or the Helmholtz equation for large wave number

The Triangulation \mathcal{G}

Assumption (quasi-uniform regular triangulation)
Each element map F_{τ} can be written as $F_{\tau}=R_{\tau} \circ A_{\tau}$, where A_{τ} is an affine map (containing the scaling by h_{τ}) and R_{τ} is an h_{τ}-independent analytic map. Let $\tilde{\tau}:=A_{\tau}(\hat{\tau})$. The maps R_{τ} and A_{τ} satisfy for shape regularity constants $C_{\text {affine }}, C_{\text {metric }}, \gamma>0$ independent of H :

$$
\begin{array}{ll}
\left\|A_{\tau}^{\prime}\right\|_{L^{\infty}(\hat{\tau})} \leq C_{\text {affine }} H, & \left\|\left(A_{\tau}^{\prime}\right)^{-1}\right\|_{L^{\infty}(\hat{\tau})} \leq C_{\text {affine }} H^{-1} \\
\left\|\left(R_{\tau}^{\prime}\right)^{-1}\right\|_{L^{\infty}(\tilde{\tau})} \leq C_{\text {metric }}, \quad\left\|\nabla^{n} R_{\tau}\right\|_{L^{\infty}(\tilde{\tau})} \leq C_{\text {metric }} \gamma^{n} n!\quad \forall n \in \mathbb{N}_{0} .
\end{array}
$$

Approximation Space and Basis Functions

Define

$$
S:=\left\{u \in H_{0}^{1}(\Omega)|\forall \tau \in \mathcal{G}: u|_{\tau} \circ F_{\tau} \in \mathbb{P}_{1}\right\} .
$$

$\left(b_{i}\right)_{i=1}^{n}$ usual \mathbb{P}_{1} basis
$\omega_{i}:=\operatorname{supp} b_{i}$
conforming Galerkin method: Find $u_{s} \in S$ such that

$$
a\left(u_{S}, v\right)=F(v) \quad \forall v \in S .
$$

If A, f and Ω are sufficiently smooth such that the problem is H^{2}-regular, then

$$
\left\|u-u_{S}\right\|_{H^{1}(\Omega)} \leq C H\|f\|_{L^{2}(\Omega)} .
$$

Goal:

Construct $V_{A L} \subset H_{0}^{1}(\Omega)$ such that the linear convergence rate is preserved for heterogeneous and/or highly oscillatory coefficients.

Let $L_{\Omega}^{-1}: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ denote the solution operator: Given $f \in L^{2}(\Omega)$, find $u \in H_{0}^{1}(\Omega)$ such that

$$
a(u, v):=\int_{\Omega}\langle A \nabla u, \nabla v\rangle=\int_{\Omega} f v=: F(v)
$$

1. $V_{A L}:=\operatorname{span}\left\{L_{\Omega}^{-1}\left(\chi_{\tau}\right) \mid \tau \in \mathcal{G}\right\} \quad$ - global basis functions

- very large overlap
- not computable

2. $\quad V_{i}:=\operatorname{span}\left\{b_{i} L_{\Omega}^{-1}\left(\chi_{\tau}\right) \mid \tau \in \mathcal{G}\right\} \quad+$ local basis functions

$$
V_{A L}:=V_{1}+V_{2}+\cdots+V_{n} \quad \text { - very large overlap }
$$

- not computable

$V_{i}^{\text {near }}:=\operatorname{span}\left\{b_{i} L_{\Omega}^{-1}\left(\chi_{\tau}\right) \mid \tau \subset \omega_{i, 1}\right\}$ $X_{i}^{\text {far }}:=\operatorname{span}\left\{\left.L_{\Omega}^{-1}\left(\chi_{\tau}\right)\right|_{\omega_{i, 1}} \mid \tau \subset \Omega \backslash \omega_{i, 1}\right\}$ $\tilde{V}_{i}^{f a r}$ low dim. approximation of $X_{i}^{f a r}$ $V_{i}^{\text {far }}:=\left\{b_{i} v \mid v \in \tilde{V}_{i}^{\text {far }}\right\}$

3. $V_{i}:=V_{i}^{\text {near }}+V_{i}^{\text {far }}$
$V_{A L}:=V_{1}+V_{2}+\cdots+V_{n}+$ small overlap
4. $\quad L_{\Omega}^{-1} \leftarrow L_{\Omega, h}^{-1}$

- not computable
+ local basis functions
+ local basis functions
+ small overlap
+ computable
- not efficient

The Mesh and Local Solution Operator
$\omega_{i, 0}:=\omega_{i}=\operatorname{supp} b_{i}$
$\omega_{i, j+1}:=\bigcup\left\{\bar{\tau} \mid \tau \in \mathcal{G}\right.$ and $\left.\omega_{i, j} \cap \bar{\tau} \neq \emptyset\right\}$
$\omega_{i}^{\text {far }}:=\omega_{i, 2} \backslash \overline{\omega_{i, 1}}$
$\mathcal{G}_{i, j}:=\left\{\tau \in \mathcal{G}: \tau \subset \omega_{i, j}\right\}$
$\mathcal{G}_{i}^{\text {far }}:=\mathcal{G}_{i, 2} \backslash \mathcal{G}_{i, 1}$
$\mathcal{R}^{1}\left(\mathcal{G}_{i}^{\text {far }}\right)$ refinement of $\mathcal{G}_{i}^{\text {far }}$
$\mathcal{R}^{t}\left(\mathcal{G}_{i}^{\text {far }}\right):=\mathcal{R}^{1}\left(\mathcal{R}^{t-1}\left(\mathcal{G}_{i}^{f a r}\right)\right)$

For a subdomain $\omega_{i, 2} \subset \Omega$ let $L_{\omega_{i, 2}}^{-1}: L^{2}\left(\omega_{i, 2}\right) \rightarrow H_{0}^{1}\left(\omega_{i, 2}\right)$ denote the local solution operator: Given $g \in L^{2}\left(\omega_{i, 2}\right)$, find $u \in H_{0}^{1}\left(\omega_{i, 2}\right)$ such that

$$
a(u, v):=\int_{\omega_{i, 2}}\langle A \nabla u, \nabla v\rangle=\int_{\omega_{i, 2}} g v=: G(v)
$$

Construction of Local PUM Spaces I

$S_{H}:=\operatorname{span}\left\{\chi_{\tau} \mid \tau \in \mathcal{G}\right\}, \quad S_{H} \subset S_{h} \subset H_{0}^{1}(\Omega)$
$S_{i, 2, h}:=\left\{\left.u\right|_{\omega_{i, 2}} \mid u \in S_{h} \wedge \operatorname{supp} u \subset \omega_{i, 2}\right\}$
Nearfield ($\tau \in \mathcal{G}_{i, 1}$):
Find $\tilde{B}_{i, \tau} \in S_{i, 2, h}$ such that

$$
\int_{\omega_{i, 2}}\left\langle A \nabla \tilde{B}_{i, \tau}, \nabla v\right\rangle=\int_{\omega_{i, 2}} \chi_{\tau} v \quad \forall v \in S_{i, 2, h} .
$$

$B_{i, \tau}:=b_{i} \tilde{B}_{i, \tau} \quad V_{i}^{\text {near }}:=\operatorname{span}\left\{B_{i, \tau} \mid \tau \in \mathcal{G}_{i, 1}\right\}$
Farfield $\left(\tau \in \mathcal{R}^{t}\left(\mathcal{G}_{i}^{\text {far }}\right), t \sim \log \frac{1}{H}\right)$:
Find $\tilde{B}_{i, \tau} \in S_{i, 2, h}$ such that

$$
\int_{\omega_{i, 2}}\left\langle A \nabla \tilde{B}_{i, \tau}, \nabla v\right\rangle=\int_{\omega_{i, 2}} \chi_{\tau} v \quad \forall v \in S_{i, 2, h} .
$$

Construction of Local PUM Spaces II

$X_{i}^{f a r}:=\operatorname{span}\left\{\left.\tilde{B}_{i, \tau}\right|_{\omega_{i, 1}}: \tau \in \mathcal{R}^{t}\left(\mathcal{G}_{i}^{f a r}\right)\right\}$
The functions in $X_{i}^{f a r}$ are locally L-harmonic on $\omega_{i, 1}$, i.e. any $v \in X_{i}^{f a r}$ satisfies

$$
\int_{\omega_{i, 1}}\langle A \nabla v, \nabla w\rangle=0 \quad \forall w \in S_{i, 1, h}:=\left\{w \in S_{h}: \text { supp } w \subset \omega_{i, 1}\right\} .
$$

$X_{i}^{f a r}$ can be approximated by a low dimensional space. Let $\tilde{V}_{i}^{f a r}$ be the low dimensional approximation of $X_{i}^{\text {far }}$. Then we set

$$
V_{i}^{\text {far }}:=\left\{b_{i} v \mid v \in \tilde{V}_{i}^{\text {far }}\right\} .
$$

Finally we define

$$
V_{A L}:=\left(V_{1}^{\text {near }}+V_{1}^{f a r}\right)+\cdots+\left(V_{n}^{\text {near }}+V_{n}^{f a r}\right) .
$$

Approximation of $X_{i}^{\text {far }}$

Lemma (Bebendorf, Hackbusch 2003)
Let $D \subset \Omega$ and $X(D)$ the space of locally L-harmonic functions on D.
Furthermore, let $D_{2} \subset D$ be a convex domain such that

$$
\operatorname{dist}\left(D_{2}, \partial D\right) \geq \operatorname{diam}\left(D_{2}\right)>0 .
$$

Then for any $M>1$ there is a subspace $W \subset X\left(D_{2}\right)$ so that

$$
\inf _{w \in W}\|u-w\|_{L^{2}\left(D_{2}\right)} \leq \frac{1}{M}\|u\|_{L^{2}(D)} \quad \forall u \in X(D)
$$

and

$$
\begin{equation*}
\operatorname{dim} W \leq c^{d}\lceil\log M\rceil^{d+1} \tag{1}
\end{equation*}
$$

where d is the spatial dimension and c only depends on α and β.

Error Analysis I

1. Let $S:=\operatorname{span}\left\{\chi_{\tau} \mid \tau \in \mathcal{G}\right\}$. The approximation of u is given by

$$
u_{A L}=L_{\Omega}^{-1} P_{S} f
$$

where $P_{S}: L^{2}(\Omega) \rightarrow S$ is the L^{2}-orthogonal projection onto S.
2.

$$
u_{A L}=\sum_{i=1}^{n} b_{i} L_{\Omega}^{-1} P_{S} f=L_{\Omega}^{-1} P_{S} f
$$

3.

$$
\begin{aligned}
& f_{i}^{\text {near }}:=\sum_{x_{j} \in \dot{\omega}_{i, 1}}\left(P_{S} f\right)\left(x_{j}\right) b_{j} \text { and } f_{i}^{f a r}:=\sum_{\left.x_{j} \in \Omega\right) \backslash \hat{\omega}_{i, 1}}\left(P_{S} f\right)\left(x_{j}\right) b_{j} \\
& L_{\Omega}^{-1} P_{S} f=\sum_{i=1}^{n} \underbrace{b_{i} L_{\Omega}^{-1} f_{i}^{\text {near }}}_{u_{i}^{\text {near }}}+\sum_{i=1}^{n} b_{i} \underbrace{L_{\Omega}^{-1} f_{i}^{f a r}}_{u_{i}^{\text {far }}} .
\end{aligned}
$$

Error Analysis II

Lemma (Caccioppoli inequality)
Let $u \in X(D)$ and let $K \subseteq D$ be a domain with $\operatorname{dist}(K, \partial D)>0$. Then we have $\left.u\right|_{K} \in H^{1}(K)$ and

$$
\|\nabla u\|_{L^{2}(K)} \leq \sqrt{\frac{\beta}{\alpha}} \frac{4}{\operatorname{dist}(K, \partial D)}\|u\|_{L^{2}(D)} .
$$

There exists $\tilde{u}_{i}^{f a r} \in \tilde{V}_{i}^{f a r}$ such that

$$
\begin{gathered}
\left\|u_{i}^{f a r}-\tilde{u}_{i}^{f a r}\right\|_{H^{m}\left(\omega_{i}\right)} \leq C H^{3-m}\left\|\nabla L_{\Omega}^{-1} f_{i}^{f a r}\right\|_{L^{2}\left(\omega_{i, 1}\right)} \quad m=0,1 . \\
u_{A L}
\end{gathered}
$$

Error Analysis III

$$
\begin{aligned}
\left\|u-u_{A L}\right\|_{H^{1}(\Omega)} & \leq\left\|u-L_{\Omega}^{-1} P_{S} f\right\|_{H^{1}(\Omega)}+\left\|L_{\Omega}^{-1} P_{S} f-u_{A L}\right\|_{H^{1}(\Omega)} \\
& \leq C H\|f\|_{L^{2}(\Omega)}+\left\|\sum_{i=1}^{n} b_{i}\left(u_{i}^{\text {far }}-\tilde{u}_{i}^{f a r}\right)\right\|_{H^{1}(\Omega)}
\end{aligned}
$$

4. Replace L_{Ω}^{-1} by $L_{\Omega, h}^{-1}$.

Assumption
Let $f \in H^{p-1}(\Omega)$ for some $p \in \mathbb{N}$.

$$
\sup _{f \in H^{p-1}(\Omega) \backslash\{0\}} \inf _{v \in S_{h}} \frac{\left\|L_{\Omega}^{-1} f-v\right\|_{H^{1}(\Omega)}}{\|f\|_{H^{p-1}(\Omega)}} \leq C H
$$

Céa's lemma implies

$$
\left\|L_{\Omega}^{-1} f-L_{\Omega, h}^{-1} f\right\|_{H^{1}(\Omega)} \leq C H\|f\|_{L^{2}(\Omega)}
$$

Error Analysis IV

Corollary (Peterseim, Sauter 2012)

Let $A \in C^{p}\left(\Omega, \mathbb{R}_{\text {sym }}^{d \times d}\right)$ for some $p \in \mathbb{N}$ be uniformly elliptic and assume $f \in H^{p-1}(\Omega)$. Further let the boundary $\partial \Omega$ be of class C^{p}. Assume that the coefficient A satisfies

$$
\frac{1}{q!}\left\|\nabla^{q} A\right\|_{L^{\infty}(\Omega)} \leq C \epsilon^{-q}
$$

for some (small) $\epsilon>0$ and for all $1 \leq q \leq p$. Let p and h be chosen such that

$$
p=\left\lceil\frac{\log h}{\log \left(C_{9}^{\prime} h / \epsilon\right)}\right\rceil \quad \text { and } \quad C_{9}^{\prime} h<\epsilon
$$

holds. Then the Galerkin discretization with the corresponding hp-finite element space S_{h}^{p} has a unique solution u_{h} which converges linearly

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h\|f\|_{H^{p-1}(\Omega)}
$$

Error Analysis V

5. We set $u_{i}:=\chi_{i}\left(u-\bar{u}_{i}\right)$ and observe that

$$
u_{i}=L_{\omega_{i, 2}}^{-1}\left(g_{i}\right)
$$

with

$$
g_{i}= \begin{cases}f & \text { in } \omega_{i, 1} \\ \chi_{i} f-2\left\langle A \nabla \chi_{i}, \nabla u\right\rangle-\left(u-\bar{u}_{i}\right) \operatorname{div}\left(A \nabla \chi_{i}\right) & \text { in } \omega_{i}^{f a r}\end{cases}
$$

We set

$$
g_{i}^{\text {near }}:= \begin{cases}f & \text { in } \omega_{i, 1} \\ 0 & \text { in } \omega_{i}^{f a r}\end{cases}
$$

$$
g_{i}^{f a r}:= \begin{cases}0 & \text { in } \omega_{i, 1} \\ \chi_{i} f-2\left\langle A \nabla \chi_{i}, \nabla u\right\rangle-\left(u-\bar{u}_{i}\right) \operatorname{div}\left(A \nabla \chi_{i}\right) & \text { in } \omega_{i}^{f a r}\end{cases}
$$

Cutoff Function

Let $Q \in(2, \infty)$ be fixed. For $\frac{Q^{\prime}}{3} \leq q \leq \frac{Q}{3}$

- $\left\|\chi_{i}\right\|_{L^{q}\left(\omega_{i}^{\text {far }}\right)} \leq C H_{i}^{\frac{2}{q}}$
- $\left\|\nabla \chi_{i}\right\|_{L^{q}\left(\omega_{i}^{f a r}\right)} \leq \frac{C}{H_{i}} H_{i}^{\frac{2}{q}}=C H_{i}^{\frac{2-q}{q}}$
- $\left\|\operatorname{div}\left(A \nabla \chi_{i}\right)\right\|_{L q\left(\omega_{i}^{\text {far }}\right)} \leq \frac{C}{H_{i}^{2}} H_{i}^{\frac{2}{q}}=C H_{i}^{\frac{2-2 q}{q}}$
- $\left.\chi_{i}\right|_{\overline{\omega_{i, 1}}}=1$
- $\chi_{i} \mid \partial \omega_{i, 2}=0$.

Ansatz mollifier: $\varphi(x):=x^{2}(3-2 x)$
Let $\hat{\eta} \in H^{1}\left(\hat{\omega}_{i}^{\text {far }}\right)$ be such that

$$
\begin{aligned}
\operatorname{div}(\hat{A} \nabla \hat{\eta}) & =0 \text { in } \hat{\omega}_{i}^{f a r} \\
\hat{\eta} & =\left\{\begin{array}{l}
0 \text { on } \partial \hat{\omega}_{i, 2} \\
1 \text { on } \partial \hat{\omega}_{i, 1}
\end{array}\right.
\end{aligned}
$$

Finally we set $\hat{\chi}:=\varphi(\hat{\eta})$.

$W^{1, p}$-Regularity of Poisson Problem with L^{∞}-Coefficient

Given $F \in W^{-1, q}(\Omega)$ for some $q \in[2, \infty)$, find $w \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega}\langle\nabla w, \nabla v\rangle=F(v) \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Let $Q>2$ be fixed. For a bounded domain Ω with $\partial \Omega \in C^{1}$ there exists a constant $K_{Q}>1$ depending only on Ω and Q such that

$$
\|\nabla w\|_{L^{Q}(\Omega)} \leq K_{Q}\|F\|_{w^{-1, Q}(\Omega)}
$$

Find $u \in H^{1}(\Omega)$ such that

$$
\begin{align*}
\operatorname{div}(A \nabla u) & =0 & & \text { on } \Omega \tag{2}\\
u & =h & & \text { on } \partial \Omega .
\end{align*}
$$

Theorem

Let $\Omega \subset \mathbb{R}^{d}(d \geq 2)$ be a bounded domain and let $\partial \Omega \in C^{1}$. Further let $Q \in(2, \infty)$ be fixed and $Q^{\prime}=\frac{Q}{Q-1}$. Assume that $A \in L^{\infty}\left(\Omega, \mathbb{R}_{\text {sym }}^{d \times d}\right)$ is uniformly elliptic and $\frac{\alpha}{\beta} \in\left[1-\frac{1}{K_{Q}}, 1\right)$. Then equation (2) is uniquely solvable in $W^{1, p}(\Omega)$ for each $h \in W^{1-1 / p, p}(\partial \Omega)$ with $Q^{\prime} \leq p \leq Q$ and the solution satisfies

$$
\|\nabla u\|_{L^{p}(\Omega)} \leq C\|h\|_{W^{1-1 / p, p}(\partial \Omega)}
$$

with a constant C depending on β, p, and the domain Ω.

Main Result

Assumption

$$
\sup _{f \in L^{2}\left(\omega_{i, 2}\right) \backslash\{0\}} \inf _{v \in S_{i, 2, h}} \frac{\left\|L_{\omega_{i, 2}}^{-1} f-v\right\|_{H^{1}\left(\omega_{i, 2}\right)}}{\|f\|_{L^{2}\left(\omega_{i, 2}\right)}} \leq C h_{i},
$$

where h_{i} denotes the mesh width of the refined mesh $\mathcal{R}^{t}\left(\mathcal{G}_{i}^{f a r}\right)\left(t \sim \log \frac{1}{H}\right)$.

The control parameters for the AL-basis can be chosen in such a way that for every $f \in L^{\infty}(\Omega)$ and $A \in L^{\infty}\left(\Omega, \mathbb{R}_{\text {sym }}^{2 \times 2}\right)$ such that $\frac{\alpha}{\beta} \in[1-C, 1)$ with $C=O(1)$ the estimate

$$
\left\|u-u_{A L}\right\|_{H^{1}(\Omega)} \leq C H\|f\|_{L^{\infty}(\Omega)}
$$

holds and for the dimension we have

$$
\operatorname{dim} V_{A L} \leq C H^{-2} \log ^{3} \frac{1}{H}
$$

Thank you for your attention!

