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Problem Formulation

I As model problem, we consider the Laplace equation

−∆u(x, ω) = f (x) in D(ω), u(x, ω) = 0 on Γ(ω).

I We are interested in computing the mean E[u](x) and the variance
V[u](x) with respect to a fixed reference domain Dref .

I Here, Dref ⊂ Rd for d = 2 or d = 3 denotes a domain with Lipschitz
continuous boundary Γ := ∂Dref .

I Moreover, we model the stochastic parameter with respect to the
complete probability space (Ω,F ,P) where Ω is a seperable set,
F ⊂ 2Ω a σ-field and P a probability measure.
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I Let V : Dref × Ω→ Rd be an invertible vector field of class C 2,
i.e. V is twice continuously differentiable with respect to x.

I Thus, V defines a family of domains

D(ω) := V(Dref , ω).

I Additionally, we shall assume that the singular-values of the vector
field V’s Jacobian J(x, ω) satisfy

0 < σ ≤ min
{
σ
(
J(x, ω)

)}
≤ max

{
σ
(
J(x, ω)

)}
≤ σ <∞.

 uniform ellipticity

I In order to guarantee solvability for almost every ω ∈ Ω, we consider
the right hand side f (x) to be defined on the hold-all domain

D :=
⋃
ω∈Ω

D(ω).
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Reformulation for the reference domain

V(x, ωi)

Dref D(ωi)

I The main tool in the regularity analysis will be the equivalence
between the diffusion problem on D(ω) and the diffusion problem
pulled back to the reference domain Dref .

I This equivalence is described by the vector field V(x, ω). For a
function v on D(ω), the transported function is given by

v̂(x, ω) := (v ◦ V)(x, ω).

Due to the chain rule, we have for v ∈ C 1
(
D(ω)

)
(∇v)

(
V(x, ω)

)
= J(x, ω)−ᵀ∇v̂(x, ω).
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I For given ω ∈ Ω, the variational formulation for the model problem
is given as follows: Find u(ω) ∈ H1

0

(
D(ω)

)
such that∫

D(ω)

〈∇u,∇v〉 dx =

∫
D(ω)

fv dx for all v ∈ H1
0

(
D(ω)

)
.

I Thus, with

A(x, ω) :=
(
J(x, ω)ᵀJ(x, ω)

)−1
det J(x, ω)

and
fref(x, ω) := f̂ (x, ω) det J(x, ω),

we obtain the variational formulation with respect to the reference
domain: Find û(ω) ∈ H1

0 (Dref) such that for all v̂(ω) ∈ H1
0 (Dref)∫

Dref

〈A(ω)∇xû(ω),∇xv̂(ω)〉 dx =

∫
Dref

fref(ω)v̂(ω) dx.
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I The spaces H1
0 (Dref) and H1

0

(
D(ω)

)
are isomorphic by the

isomorphism

E : H1
0 (Dref)→ H1

0

(
D(ω)

)
, v 7→ v ◦ V(ω)−1.

The inverse mapping is given by v 7→ v ◦ V(ω).

I The space of test functions is not dependent on ω ∈ Ω: It holds
H1

0

(
D(ω)

)
= {E(v) : v ∈ H1

0 (Dref)}. Thus, for E(v) ∈ H1
0

(
D(ω)

)
,

we have

Ê(v) = E(v) ◦ V = v ◦ V−1 ◦ V = v ∈ H1
0 (Dref)

independent of ω ∈ Ω.
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I In particular, the solutions u on D(ω) and û on Dref satisfy

û(ω) = u ◦ V(ω) and u(ω) = û ◦ V(ω)−1.

I Now, we can specify the mean and the variance of u with respect to
Dref according to

E[u](x) = E[u ◦ V(ω)](x) =

∫
Ω

u
(
V(x, ω)

)
dP(ω)

and

V[u](x) = V[u ◦ V(ω)](x) =

∫
Ω

[
u
(
V(x, ω)

)]2
dP(ω)−

(
E[u](x)

)2
.
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Karhunen-Loève expansion

I We assume that the domain perturbation field V(x, ω) is given by a
truncated Karhunen-Loève expansion, i.e.

V(x, ω) = E[V](x) +
M∑
k=1

σkϕk(x)Xk(ω).

I It can be computed up to a prescribed precision, e.g. by the pivoted
Cholesky decomposition, cf. [Harbrecht,P.,Siebenmorgen14a] if the
mean

E[V] : Dref → Rd , E[V](x) =
[
E[v1](x), . . . ,E[vd ](x)

]ᵀ
and the (matrix-valued) covariance function

Cov[V] : Dref × Dref → Rd×d , Cov[V](x, x′) = [Covi,j(x, x
′)]di,j=1

are provided.
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I In general, we cannot reconstruct the distribution of the random
variables {Xk}k from the covariance function. Therefore, we have
also to assume that the distribution is known or appropriately
approximated.

Example:Transformed domain

Figure: Transformed L-shape

E[V](x) = x

Cov[V](x, y) =
1

25

[
2e−4‖x−y‖2

2 0

0 e−‖x−y‖
2
2

]

Length of the Karhunen-Loève expansion:
M = 343 (precision ε = 10−6)
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Assumption
(1) The random variables {Xk}k are centered and take values in [−1, 1],

i.e. Xk(ω) ∈ [−1, 1] for all k and almost every ω ∈ Ω.

(2) The random variables {Xk}k are independent and identically
distributed.

(3) The sequence {γk}k :=
{
‖σkϕk‖W 1,∞(D;Rd )

}
k

is at least in `1(R).

We denote its norm by cγ :=
∑∞

k=1 γk .

I Here, the space W 1,∞(D;Rd) is equipped with the norm

‖v‖W 1,∞(D;Rd ) = max
{
‖v‖L∞(D;Rd ), ‖v′‖L∞(D;Rd×d )

}
,

where v′ denotes the Jacobian of v.
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I For the rest of this talk, we will refer to the randomness only via the
coordinates

y ∈ � := [−1, 1]M , where y = [y1, . . . , yM ].

The related spaces Lp(�) for are equipped with the push-forward
measure PX.

I Wlog., we may assume that E[V](x) = x is the identity mapping.
Otherwise, we replace Dref by

D̃ref := E[V](Dref) and ϕ̃k :=
√

det(E[V]−1)′ϕk ◦ E[V]−1.

Therefore, we obtain

V(x, y) = x +
M∑
k=1

σkϕk(x)yk and J(x, y) = I +
M∑
k=1

σkϕ
′
k(x)yk ,

where I ∈ Rd×d denotes the identity matrix.
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I By this construction, we recognize, that Dref is in fact the mean of
the domains D(ω). It holds∫

Ω

D(ω) dP(ω) =

∫
Ω

V (Dref , ω) dP(ω) = Dref ,

since the random variable {Xk}k are centered.

I For the subsequent regularity results, we introduce the space
L∞
(
�; L∞(Dref ;Rd)

)
consisting of all maps V : �→ L∞(Dref ;Rd)

with
|||V|||d := ess sup

y∈�
‖V(y)‖L∞(Dref ;Rd ) <∞.

I Furthermore, the space L∞
(
�; L∞(Dref ;Rd×d)

)
consists of all

matrix-valued functions M : �→ L∞(Dref ;Rd×d) with

|||M|||d×d := ess sup
y∈�

‖M(y)‖L∞(Dref ;Rd×d ) <∞.
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Regularity results

I For the numerical approximation of E[u] and V[u] by e.g. the
quasi-Monte Carlo quadrature or stochastic collocation, we have to
provide regularity results for the solution û.

I To that end, we have to analyze the derivatives of the diffusion
matrix

A(x, y) =
(
J(x, y)ᵀJ(x, y)

)−1
det J(x, y)

and the right hand side

fref(x, y) = f̂ (x, y) det J(x, y),

on Dref .
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Lemma
It holds for the derivatives of

(
J(x, y)ᵀJ(x, y)

)−1
under the conditions of

the assumption that

∣∣∣∣∣∣∂αy (JᵀJ)−1
∣∣∣∣∣∣

d×d ≤ |α|!
γα

σ2

(
2(1 + cγ)

σ2 log 2

)|α|
.

Lemma
It holds for the derivatives of det J(x, y) under the condition of the
assumption that

∥∥∂αy det J
∥∥
L∞(�;L∞(Dref ))

≤ (|α|!)2σd

(
d

σ log 2

)|α|
γα.

15 / 1



Lemma
For the univariate derivatives of det J(x, y) it holds under the condition of
the assumption that

∥∥∂αyi det J
∥∥
L∞(�;L∞(Dref ))

≤ α!σd

(
2d

σ

)α
γαi .

I The proofs of these Lemmata are obtained by an application of the
multivariate Faà di Bruno formula (generalized chain rule). For the
determinant, we apply the identity detM = exp(tr logM).

I In the multivariate case, the successive application of Faà di Bruno’s
formula yields an additional factor |α|! in our estimates. For
univariate derivatives, this factor can be avoided, but up to now, we
were not able to avoid it in the multivariate case.
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Theorem
The derivatives of the diffusion matrix A(x, y) satisfy

∣∣∣∣∣∣∂αy A∣∣∣∣∣∣d×d ≤ 2(|α|!)2σ
d

σ2

(
2d(1 + cγ)

σ2 log 2

)|α|
γα.

Theorem
It holds for the univariate derivatives of the diffusion matrix A(x, y) that

∣∣∣∣∣∣∂αyiA∣∣∣∣∣∣d×d ≤ (α + 1)!
σd

σ2

(
2d(1 + cγ)

σ2 log 2

)α
γαi .
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Theorem
Given that f (x) is analyic, the derivatives of the right hand side fref(x, y)
satisfy

∥∥∂αy fref

∥∥
L∞(�;L∞(Dref ))

≤ 2(|α|!)2cf σ
d

(
d

σρ log 2

)|α|
γα.

Theorem
It holds for the univariate derivatives of the right hand side fref(x, y) that

∥∥∂αyi fref

∥∥
L∞(�;L∞(Dref ))

≤ (α + 1)!cf σ
d

(
2d

σρ log 2

)α
γαi .

I The univariate results are sufficient to show the applicability of the
stochastic collocation method, cf. [Babuška et al. 07]. Here, we
obtain rates of convergence in terms of the particular decay of the
perturbation field’s Karhunen-Loève expansion.
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I Incorporating all the constants provided by the theorems (and the
following one), leads to the modified sequence

{γ̃k}k :=

{
γk max

(
4dσd

σρ log2 2
,

8dσd(1 + cγ)

σ4 log2 2

)}
k

.

Theorem
For the derivatives of the solution û to the transported model problem, it
holds ∥∥∂αy û(y)

∥∥
H1(Dref )

≤ σ2

σd
(|α|!)3cf cD γ̃

α,

where cD is a constant dependent on the domain Dref .

I For all proofs in this paragraph, see [Harbrecht,P.,Siebenmorgen14b].
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Quasi-Monte Carlo quadrature

I The quasi-Monte Carlo quadrature is a sampling method for the
approximation of high-dimensional integrals. For a given set of
quasi-random points {y1, . . . , yN}, e.g. Halton points, we have

E[u](x) ≈ 1

N

N∑
i=1

û(x, yi )
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I Our regularity results imply that the Quasi-Monte Carlo quadrature
based on Halton points for the mean E[u] is strongly tractable, i.e.
convergence independent of M, if the sequence {γ̃k}k is bounded by

γ̃k . k−5−ε

for arbitrary ε > 0.

I More precisely, we have for the quadrature error based on N points
the estimate∥∥∥∥E[u]− 1

N

N∑
i=1

û(·, yi )
∥∥∥∥
H1(Dref )

.
σ2

σd
cfN

δ−1

for all δ > 0 with a constant only dependent on δ.

I Notice that we can obtain similar approximation results for the
moments of û, i.e. for ûp with p ∈ N, possibly with worse constants.
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Numerical results

I For the preceding analysis, we have considered the diffusion problem
for the reference domain Dref .

I For the numerical solution, we exploit that û(y) = u ◦ V(y).

I Thus, we may compute samples of the solution on the actual
realization V(Dref , yi ). To this end, we employ parametric finite
elements (here: mapped piecewise linear finite elements).

I As a consequence, we avoid the computation of the diffusion matrix
A(x, y).

I We have simply to solve the Laplacian equation on the parametric
domain V(Dref , yi ) for each sample point yi
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Cov[V](x, y) =
1

25

[
e−4‖x−y‖2

2 0

0 e−‖x−y‖
2
2

]
, f (x) = 2π2 sin(πx1) sin(πx2).

Figure: Mean (L-shape)

Figure: Variance (L-shape)
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Cov[V](x, y) =
1

100

[
5e−4‖x−y‖2

2 e−0.1‖2x−y‖2
2

e−0.1‖x−2y‖2
2 5e−‖x−y‖

2
2

]
, f (x) = 1.

Figure: Mean (Disc)

Figure: Variance (Disc)
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Figure: H1-error (left), L2-error (right).
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Figure: W 1,1-error (left), L2-error (right).
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Cov[V](x, y) = F0(x)F0(y)c(θx, θy)

[
cos(θx)
sin(θx)

] [
cos(θy)
sin(θy)

]ᵀ
, f (x) = 1

with c(θx, θy) = 1
900

∑5
k=0 cos(kθx) cos(kθy) + sin(kθx) sin(kθy),

Figure: Mean (Interf.)

Figure: Variance (Interf.)
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Figure: H1-error (left), L2-error (right).
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Figure: W 1,1-error (left), L2-error (right).
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Conclusion

I Given the mean and the covariance function of a random field V, we
can make it feasible for numerical computations by computing its
Karhunen-Loève expansion with the pivoted Cholesky decomposition.

I We have regularity results, which imply the tractability of the
quasi-Monte Carlo quadrature for Halton points for the computation
of E[u] and V[u] with respect to Dref .

I By the application of parametric finite elements, we can compute
each sample on the actual realization of the domain.
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