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Elliptic PDEs with Point Source Forcing Term

Let Ω ⊂ R2 be a bounded polygonal domain. We consider the following
problem: find u ∈ X such that

−∆u = δx in Ω,
u = 0 on ∂Ω, (1)

where δx is the Dirac measure at some given x ∈ Ω. For simplicity, we assume
that x = 0 ∈ Ω and we write δx = δ.
The weak formulation of (1) is then: find uδ ∈ X such that

a(uδ, v) :=
∫

Ω
∇uδ · ∇v = 〈δ, v〉, ∀v ∈ Y , (2)

where 〈·, ·〉 denotes the Y ′ − Y duality pairing.
Problem:

Sobolev embedding theorem [1] implies W 1,q
0 (Ω) ⊂ C(Ω) only for

2 < q <∞;
Need a theory for W 1,p

0 (Ω)−W 1,q
0 (Ω) spaces

( 1
p + 1

q = 1
)

instead of the
usual H1

0 (Ω) one.



An Abstract Result [2]

Theorem

Let X and Y be Banach spaces such that Y is reflexive, F ∈ Y ′ and
a(·, ·) : X × Y → R be a bilinear form such that

(i) (continuity) there exists γ > 0 such that

a(u, v) ≤ γ‖u‖X‖v‖Y , u ∈ X , v ∈ Y ;

(ii) (inf-sup) there exists α > 0 such that

supv∈Y
a(u,v)
‖v‖Y

≥ α‖u‖X , u ∈ X ,
supu∈X

a(u,v)
‖u‖X

≥ α‖v‖Y , v ∈ Y .

Then there exists a unique u ∈ X satisfying

a(u, v) = F (v), ∀v ∈ Y . (3)

Moreover, it holds
‖u‖X ≤

1
α
‖F‖Y ′ . (4)



Star-Shaped Supported Function

For some given parameter ε > 0, let us consider the star-shaped domain

Dε := {(r cos(θ), r sin(θ)) | θ ∈ [0, 2π], r ∈ [0, rε(θ)]} , (5)

and we assume that there exists c,C > 0 such that

cε ≤ rε(θ) ≤ Cε, ∀θ ∈ [0, 2π], ∀ε > 0.

We then define the function

fε := 1
µ(Dε)χDε , (6)

where χDε is the characteristic function over Dε and µ(Dε) its measure. We
have fε ∈ L∞(Ω) and so fε ∈W−1,p(Ω) :=

(
W 1,q

0 (Ω)
)′ for 1 < p <∞.

Proposition
It holds

fε −→
ε→0

δ in D′(Ω).



Elliptic PDEs with Star-Shaped Supported Forcing Term

We then consider the auxiliary problem: find uε ∈W 1,p
0 (Ω) such that

a(uε, v) = 〈fε, v〉, ∀v ∈W 1,q
0 (Ω). (7)

Idea:
Since fε −→

ε→0
δ, we want to approximate uδ by uε;

If ‖uε‖H1
0 (Ω) blows up gently as ε→ 0, we can obtain reasonible

approximations without too many computational efforts.
Well-Posedness:

X = W 1,p
0 (Ω), Y = W 1,q

0 (Ω);
a(u, v) =

∫
Ω∇u · ∇v

1 The continuity follows from Hölder’s inequality;
2 The inf-sup condition has been proven by Verfürth in [3] with a constant αp ;

Right-hand side
1 fε ∈ Lp(Ω) ⊂W−1,p(Ω) for 1 < p <∞;
2 δ ∈W−1,p(Ω) for 1 < p < 2.



Behavior of ‖uε‖H1
0 (Ω) for a Circle

For a given R > 0, let us first assume that Dε = Bε(0) and Ω = BR (0). In that
case we have

uε(r , θ) := − 1
4π

(
r 2

ε2 + 2 log
(
ε

R

)
− 1
)
χBε(0) −

1
2π log

( r
R

)
χBR (0)\Bε(0),

and for 1 < p < 2 and ε > 0 sufficiently small

‖∇uε‖L2(Ω) ≤

√
| log(ε)|
π

,

‖∇uε‖Lp(Ω) = 1
(2π)1/q (2− p)1/p

(
R2−p − 2pε2−p

p + 2

)1/p

.



Behavior of ‖uε‖H1
0 (Ω) for Star-Shaped Domains

Lemma

For 1 < p <∞, let f , g ∈W−1,p(Ω) be such that there exists B > 0 with
‖f ‖W−1,p(Ω) ≤ B‖g‖W−1,p(Ω). Their associated solutions uf and ug then satisfy

‖uf ‖W 1,p
0 (Ω) ≤

B
αp
‖ug‖W 1,p

0 (Ω).

Remark: Due to the assumption cε ≤ rε(θ) ≤ Cε, we have

‖fε‖W−1,p(Ω) ≤
(C

c

)2
‖gCε‖W−1,p(Ω),

where gCε := 1
µ(BCε(0))χBCε(0).



Behavior of ‖uε‖H1
0 (Ω) for Star-Shaped Domains

For a given domain Ω̄ ⊂ Ω̃ and u ∈W 1,p
0 (Ω), we define its zero extension ũ to

Ω̃ as
ũ :=

{
u in Ω,
0 in Ω̃ \ Ω.

Then ũ ∈W 1,p
0 (Ω̃) and there exists a constant Cp > 0 such that

‖u‖W 1,p
0 (Ω) ≤ ‖ũ‖W 1,p

0 (Ω̃) ≤ Cp‖u‖W 1,p
0 (Ω). (8)

Lemma

Let f ∈ Lp(Ω) satisfy supp{f } ( Ω and consider Ω̃ such that Ω ⊂ Ω̄ ⊂ Ω̃.
Then

‖f ‖W−1,p(Ω) ≤
1

Cp
‖f̃ ‖W−1,p(Ω̃).

Remark: Since Ω is a bounded polygonal domain, there exists R such that
Ω ⊂ BR (0).



Behavior of ‖uε‖H1
0 (Ω) for Star-Shaped Domains

Proposition
Let Ω be a bounded polygonal domain such that Ω ⊂ BR (0) for some R > 0.
For ε > 0 sufficiently small, let fε be defined as (6) for a star shaped domain
Dε and assume that there exists constants c and C such that cε ≤ rε(θ) ≤ Cε
holds. Then, for 1 < p ≤ 2, there exists a constant Cp independent of ε such
that the solution uε of (2) satisfies

‖uε‖H1
0 (Ω) ≤C2

√
| log(ε)|,

‖uε‖W 1,p
0 (Ω) ≤Cp

((R
C

)2−p
− 2pε2−p

p + 2

)1/p

.

Remarks:
As desired, the blow-up of ‖uε‖H1

0 (Ω) is gentle;

limε→0 ‖uε‖W 1,p
0 (Ω) <∞ for 1 < p < 2;

limp→2 ‖uε‖W 1,p
0 (Ω) = ‖uε‖H1

0 (Ω) for ε > 0.



Finite Element Approximation

For a shape-regular mesh T of Ω, we define

S1(T ) :=
{
ϕ ∈ C(Ω)

∣∣ ϕ|T ∈ P1(T ), ∀T ∈ T
}
.

The FE problem then becomes: find uε,T ∈ S1(T ) such that

a(uε,T , vT ) = 〈fε, vT 〉, ∀vT ∈ S1(T ). (9)

For the well-posedness of (9), we use the same theorem as in the continuous
case. In particular, the following inf-sup condition holds [3]

sup
wT ∈S1(T )

∫
Ω∇vT · ∇wT
‖wT ‖W 1,q

0 (Ω)
≥ βp‖vT ‖W 1,p

0 (Ω).

Moreover, we have the following best approximation property

‖uε − uε,T ‖W 1,p
0 (Ω) ≤

(
1 + 1

βp

)
inf

vT ∈S1(T )
‖uε − vT ‖W 1,p

0 (Ω).



Convergence of the Finite Element Approximation

Let h := max {diam(T ) | T ∈ T }. The following convergence result for the FE
approximation holds.

Theorem
Let T be an admissible shape regular mesh. Then there exists a constant
C > 0 such that for u ∈W m,p

0 (Ω) with 1 < p ≤ 2 and m = 1 or 2, it holds

‖u − uT ‖W l,p
0 (Ω) ≤ Chk−l‖u‖W k,p

0 (Ω), l = 0, . . . , k,

with the convention that ‖u − uT ‖W 0,p
0 (Ω) = ‖u − uT ‖Lp(Ω).

In our particular case

‖uε − uε,T ‖Lp(Ω) ≤Ch
((R

C

)2−p
− 2pε2−p

p + 2

)1/p

,

‖uε − uε,T ‖L2(Ω) ≤Ch
√
| log(ε)|.



Numerical Results

Let us consider Dε = Bε(0) and Ω = B1(0). We know that the solution is

uε(r , θ) := − 1
4π

(
r 2

ε2 + 2 log (ε)− 1
)
χBε(0) −

1
2π log (r)χB1(0)\Bε(0)

In that case for 1 < p ≤ 2 and small enough ε > 0

‖uε‖H1
0 (Ω) ≤C2

√
| log(ε)|, ‖uε‖W 1,p

0 (Ω) ≤
Cp

(2− p)1/p

(( 1
C

)2−p
− 2pε2−p

p + 2

)1/p

,

‖uε‖H2
0 (Ω) ≤

C2

ε
, ‖uε‖W 2,p

0 (Ω) ≤
Cp

(2− 2p)1/p ε
2−2p

p .

It then follows

‖uε − uε,T ‖H1
0 (Ω) ≤C min

{√
| log(ε)|, h

ε

}
,

‖uε − uε,T ‖W 1,p
0 (Ω) ≤C min

{
1

(2− p)1/p

(
1

C 2−p −
2pε2−p

p + 2

)1/p

, h
(
ε2−2p

2− 2p

)1/p
}
.

All computations have been performed with the C++ library deal.II [4].



Solution for ε = 0.1 and ε = 0.0001

Figure: Exact solution for ε = 0.1 (left) and ε = 0.0001 (right).



Convergence in the H1
0 (Ω)-norm with respect to h
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Convergence in the W 1,1
0 (Ω)-norm with respect to h
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Blow-up in the H1
0 (Ω)-norm with respect to ε
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Blow-up in the W 1,1
0 (Ω)-norm with respect to ε
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Conclusion

We want to approximate the solution of the Poisson’s equation with a
point-source forcing term in a bounded polygonal domain Ω ⊂ R2;
In this aim, an approximation fε = 1

µ(Dε)χDε of the Dirac measure has
been considered (Bcε(0) ⊂ Dε ⊂ BCε(0) star-shaped);
The well-posedness of the elliptic problem in W 1,p

0 (Ω)−W 1,q
0 (Ω) with

1
p + 1

q = 1 and 1 < p <∞ has been treated;
We have introduced a FE approximation considering continuous linear
polynomials (with convergence result);
Some theoretical results concerning the dependence with respect to ε for
the constant appearing in the FE convergence have been proposed (giving
crucial informations about the preasymptotic phase);
Numerical results in the particular case of Ω = B1(0) and Dε = Bε(0)
have been presented.

Thank you for your attention.
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