Numerical Approximation of Elliptic Equations with Point-Source Forcing Term

Denis Devaud ${ }^{1}$

Under the direction of
Pr. Christoph Schwab

Pro*Doc Disentis Retreat
August 13-15, 2014

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

[^0]
Elliptic PDEs with Point Source Forcing Term

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded polygonal domain. We consider the following problem: find $u \in X$ such that

$$
\begin{array}{rll}
-\Delta u & =\delta_{x} & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega \tag{1}
\end{array}
$$

where δ_{x} is the Dirac measure at some given $x \in \Omega$. For simplicity, we assume that $x=0 \in \Omega$ and we write $\delta_{x}=\delta$.
The weak formulation of (1) is then: find $u_{\delta} \in X$ such that

$$
\begin{equation*}
a\left(u_{\delta}, v\right):=\int_{\Omega} \nabla u_{\delta} \cdot \nabla v=\langle\delta, v\rangle, \quad \forall v \in Y \tag{2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the $Y^{\prime}-Y$ duality pairing.

Problem:

- Sobolev embedding theorem [1] implies $W_{0}^{1, q}(\Omega) \subset C(\Omega)$ only for $2<q<\infty$;
- Need a theory for $W_{0}^{1, p}(\Omega)-W_{0}^{1, q}(\Omega)$ spaces $\left(\frac{1}{p}+\frac{1}{q}=1\right)$ instead of the usual $H_{0}^{1}(\Omega)$ one.

An Abstract Result [2]

Theorem

Let X and Y be Banach spaces such that Y is reflexive, $F \in Y^{\prime}$ and $a(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$ be a bilinear form such that
(i) (continuity) there exists $\gamma>0$ such that

$$
a(u, v) \leq \gamma\|u\|_{X}\|v\|_{Y}, u \in X, v \in Y
$$

(ii) (inf-sup) there exists $\alpha>0$ such that

$$
\begin{aligned}
& \sup _{v \in Y} \frac{a(u, v)}{\|v\|_{Y}} \geq \alpha\|u\|_{X}, \quad u \in X, \\
& \sup _{u \in X} \frac{a(u, v)}{\|u\|_{X}} \geq \alpha\|v\|_{Y}, \quad v \in Y
\end{aligned}
$$

Then there exists a unique $u \in X$ satisfying

$$
\begin{equation*}
a(u, v)=F(v), \forall v \in Y \tag{3}
\end{equation*}
$$

Moreover, it holds

$$
\begin{equation*}
\|u\|_{X} \leq \frac{1}{\alpha}\|F\|_{Y^{\prime}} \tag{4}
\end{equation*}
$$

Star-Shaped Supported Function

For some given parameter $\varepsilon>0$, let us consider the star-shaped domain

$$
\begin{equation*}
D_{\varepsilon}:=\left\{(r \cos (\theta), r \sin (\theta)) \mid \theta \in[0,2 \pi], r \in\left[0, r_{\varepsilon}(\theta)\right]\right\} \tag{5}
\end{equation*}
$$

and we assume that there exists $c, C>0$ such that

$$
c \varepsilon \leq r_{\varepsilon}(\theta) \leq C \varepsilon, \quad \forall \theta \in[0,2 \pi], \forall \varepsilon>0
$$

We then define the function

$$
\begin{equation*}
f_{\varepsilon}:=\frac{1}{\mu\left(D_{\varepsilon}\right)} \chi_{D_{\varepsilon}} \tag{6}
\end{equation*}
$$

where $\chi_{D_{\varepsilon}}$ is the characteristic function over D_{ε} and $\mu\left(D_{\varepsilon}\right)$ its measure. We have $f_{\varepsilon} \in L^{\infty}(\Omega)$ and so $f_{\varepsilon} \in W^{-1, p}(\Omega):=\left(W_{0}^{1, q}(\Omega)\right)^{\prime}$ for $1<p<\infty$.

Proposition

It holds

$$
f_{\varepsilon} \underset{\varepsilon \rightarrow 0}{\longrightarrow} \delta \text { in } \mathcal{D}^{\prime}(\Omega)
$$

Elliptic PDEs with Star-Shaped Supported Forcing Term

We then consider the auxiliary problem: find $u_{\varepsilon} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
a\left(u_{\varepsilon}, v\right)=\left\langle f_{\varepsilon}, v\right\rangle, \quad \forall v \in W_{0}^{1, q}(\Omega) \tag{7}
\end{equation*}
$$

Idea:

- Since $f_{\varepsilon} \longrightarrow \delta$, we want to approximate u_{δ} by u_{ε};
- If $\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ blows up gently as $\varepsilon \rightarrow 0$, we can obtain reasonible approximations without too many computational efforts.

Well-Posedness:

- $X=W_{0}^{1, p}(\Omega), Y=W_{0}^{1, q}(\Omega)$;
- $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v$
(1) The continuity follows from Hölder's inequality;
(2) The inf-sup condition has been proven by Verfürth in [3] with a constant α_{p};
- Right-hand side
(1) $f_{\varepsilon} \in L^{p}(\Omega) \subset W^{-1, p}(\Omega)$ for $1<p<\infty$;
(2) $\delta \in W^{-1, p}(\Omega)$ for $1<p<2$.

Behavior of $\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ for a Circle

For a given $R>0$, let us first assume that $D_{\varepsilon}=B_{\varepsilon}(0)$ and $\Omega=B_{R}(0)$. In that case we have

$$
u_{\varepsilon}(r, \theta):=-\frac{1}{4 \pi}\left(\frac{r^{2}}{\varepsilon^{2}}+2 \log \left(\frac{\varepsilon}{R}\right)-1\right) \chi_{B_{\varepsilon}(0)}-\frac{1}{2 \pi} \log \left(\frac{r}{R}\right) \chi_{B_{R}(0) \backslash B_{\varepsilon}(0)},
$$

and for $1<p<2$ and $\varepsilon>0$ sufficiently small

$$
\begin{aligned}
\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(\Omega)} & \leq \sqrt{\frac{|\log (\varepsilon)|}{\pi}} \\
\left\|\nabla u_{\varepsilon}\right\|_{L^{p}(\Omega)} & =\frac{1}{(2 \pi)^{1 / q}(2-p)^{1 / p}}\left(R^{2-p}-\frac{2 p \varepsilon^{2-p}}{p+2}\right)^{1 / p} .
\end{aligned}
$$

Behavior of $\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ for Star-Shaped Domains

Lemma

For $1<p<\infty$, let $f, g \in W^{-1, p}(\Omega)$ be such that there exists $B>0$ with $\|f\|_{W^{-1, p}(\Omega)} \leq B\|g\|_{W^{-1, p}(\Omega)}$. Their associated solutions u_{f} and u_{g} then satisfy

$$
\left\|u_{f}\right\|_{W_{0}^{1, p}(\Omega)} \leq \frac{B}{\alpha_{\rho}}\left\|u_{g}\right\|_{W_{0}^{1, p}(\Omega)} .
$$

Remark: Due to the assumption $c \varepsilon \leq r_{\varepsilon}(\theta) \leq C \varepsilon$, we have

$$
\left\|f_{\varepsilon}\right\|_{W^{-1, p}(\Omega)} \leq\left(\frac{C}{c}\right)^{2}\left\|g_{C_{\varepsilon}}\right\|_{W^{-1, p}(\Omega)},
$$

where $g_{C_{\varepsilon}}:=\frac{1}{\mu\left(B_{C_{\varepsilon}}(0)\right)} \chi_{B_{C_{\varepsilon}}(0)}$.

Behavior of $\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ for Star-Shaped Domains

For a given domain $\bar{\Omega} \subset \tilde{\Omega}$ and $u \in W_{0}^{1, p}(\Omega)$, we define its zero extension \tilde{u} to $\tilde{\Omega}$ as

$$
\tilde{u}:= \begin{cases}u & \text { in } \Omega \\ 0 & \text { in } \tilde{\Omega} \backslash \Omega .\end{cases}
$$

Then $\tilde{u} \in W_{0}^{1, p}(\tilde{\Omega})$ and there exists a constant $C_{p}>0$ such that

$$
\begin{equation*}
\|u\|_{W_{0}^{1, p}(\Omega)} \leq\|\tilde{u}\|_{W_{0}^{1, p}(\tilde{\Omega})} \leq C_{p}\|u\|_{W_{0}^{1, p}(\Omega)} . \tag{8}
\end{equation*}
$$

Lemma

Let $f \in L^{p}(\Omega)$ satisfy $\operatorname{supp}\{f\} \subsetneq \Omega$ and consider $\tilde{\Omega}$ such that $\Omega \subset \bar{\Omega} \subset \tilde{\Omega}$. Then

$$
\|f\|_{W^{-1, p}(\Omega)} \leq \frac{1}{C_{p}}\|\tilde{f}\|_{W^{-1, p}(\tilde{\Omega})}
$$

Remark: Since Ω is a bounded polygonal domain, there exists R such that $\Omega \subset B_{R}(0)$.

Behavior of $\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ for Star-Shaped Domains

Proposition

Let Ω be a bounded polygonal domain such that $\Omega \subset B_{R}(0)$ for some $R>0$. For $\varepsilon>0$ sufficiently small, let f_{ε} be defined as (6) for a star shaped domain D_{ε} and assume that there exists constants c and C such that $c \varepsilon \leq r_{\varepsilon}(\theta) \leq C \varepsilon$ holds. Then, for $1<p \leq 2$, there exists a constant \mathcal{C}_{p} independent of ε such that the solution u_{ε} of (2) satisfies

$$
\begin{aligned}
\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)} & \leq \mathcal{C}_{2} \sqrt{|\log (\varepsilon)|}, \\
\left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)} & \leq \mathcal{C}_{p}\left(\left(\frac{R}{C}\right)^{2-p}-\frac{2 p \varepsilon^{2-p}}{p+2}\right)^{1 / p}
\end{aligned}
$$

Remarks:

- As desired, the blow-up of $\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ is gentle;
- $\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)}<\infty$ for $1<p<2$;
- $\lim _{p \rightarrow 2}\left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)}=\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}$ for $\varepsilon>0$.

Finite Element Approximation

For a shape-regular mesh \mathcal{T} of Ω, we define

$$
S^{1}(\mathcal{T}):=\left\{\varphi \in C(\Omega)|\varphi|_{T} \in \mathbb{P}^{1}(T), \forall T \in \mathcal{T}\right\}
$$

The FE problem then becomes: find $u_{\varepsilon, \mathcal{T}} \in S^{1}(\mathcal{T})$ such that

$$
\begin{equation*}
a\left(u_{\varepsilon, \mathcal{T}}, v_{\mathcal{T}}\right)=\left\langle f_{\varepsilon}, v_{\mathcal{T}}\right\rangle, \forall v_{\mathcal{T}} \in S^{1}(\mathcal{T}) \tag{9}
\end{equation*}
$$

For the well-posedness of (9), we use the same theorem as in the continuous case. In particular, the following inf-sup condition holds [3]

$$
\sup _{w_{\mathcal{T}} \in S^{1}(\mathcal{T})} \frac{\int_{\Omega} \nabla v_{\mathcal{T}} \cdot \nabla w_{\mathcal{T}}}{\left\|w_{\mathcal{T}}\right\|_{w_{0}^{1, q}(\Omega)}} \geq \beta_{p}\left\|v_{\mathcal{T}}\right\|_{w_{0}^{1, p}(\Omega)}
$$

Moreover, we have the following best approximation property

$$
\left\|u_{\varepsilon}-u_{\varepsilon, \mathcal{T}}\right\|_{W_{0}^{1, p}(\Omega)} \leq\left(1+\frac{1}{\beta_{p}}\right) \inf _{v_{\mathcal{T}} \in S^{1}(\mathcal{T})}\left\|u_{\varepsilon}-v_{\mathcal{T}}\right\|_{W_{0}^{1, p}(\Omega)}
$$

Convergence of the Finite Element Approximation

Let $h:=\max \{\operatorname{diam}(T) \mid T \in \mathcal{T}\}$. The following convergence result for the FE approximation holds.

Theorem

Let \mathcal{T} be an admissible shape regular mesh. Then there exists a constant $C>0$ such that for $u \in W_{0}^{m, p}(\Omega)$ with $1<p \leq 2$ and $m=1$ or 2 , it holds

$$
\left\|u-u_{\mathcal{T}}\right\|_{W_{0}^{1, p}(\Omega)} \leq C h^{k-l}\|u\|_{W_{0}^{k, p}(\Omega)}, \quad I=0, \ldots, k
$$

with the convention that $\left\|u-u_{\mathcal{T}}\right\|_{W_{0}^{0, p}(\Omega)}=\left\|u-u_{\mathcal{T}}\right\|_{L^{p}(\Omega)}$.
In our particular case

$$
\begin{aligned}
& \left\|u_{\varepsilon}-u_{\varepsilon, \mathcal{T}}\right\|_{L^{p}(\Omega)} \leq C h\left(\left(\frac{R}{C}\right)^{2-p}-\frac{2 p \varepsilon^{2-p}}{p+2}\right)^{1 / p} \\
& \left\|u_{\varepsilon}-u_{\varepsilon, \mathcal{T}}\right\|_{L^{2}(\Omega)} \leq C h \sqrt{|\log (\varepsilon)|}
\end{aligned}
$$

Numerical Results

Let us consider $D_{\varepsilon}=B_{\varepsilon}(0)$ and $\Omega=B_{1}(0)$. We know that the solution is

$$
u_{\varepsilon}(r, \theta):=-\frac{1}{4 \pi}\left(\frac{r^{2}}{\varepsilon^{2}}+2 \log (\varepsilon)-1\right) \chi_{B_{\varepsilon}(0)}-\frac{1}{2 \pi} \log (r) \chi_{B_{1}(0) \backslash B_{\varepsilon}(0)}
$$

In that case for $1<p \leq 2$ and small enough $\varepsilon>0$

$$
\begin{array}{ll}
\left\|u_{\varepsilon}\right\|_{H_{0}^{1}(\Omega)} \leq C_{2} \sqrt{|\log (\varepsilon)|}, & \left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)} \leq \frac{C_{p}}{(2-p)^{1 / p}}\left(\left(\frac{1}{C}\right)^{2-p}-\frac{2 p \varepsilon^{2-p}}{p+2}\right)^{1 / p}, \\
\left\|u_{\varepsilon}\right\|_{H_{0}^{2}(\Omega)} \leq \frac{C_{2}}{\varepsilon}, & \left\|u_{\varepsilon}\right\|_{W_{0}^{2, p}(\Omega)} \leq \frac{C_{p}}{(2-2 p)^{1 / p}} \varepsilon^{\frac{2-2 p}{p}}
\end{array}
$$

It then follows

$$
\begin{aligned}
\left\|u_{\varepsilon}-u_{\varepsilon, \mathcal{T}}\right\|_{H_{0}^{1}(\Omega)} & \leq C \min \left\{\sqrt{|\log (\varepsilon)|}, \frac{h}{\varepsilon}\right\} \\
\left\|u_{\varepsilon}-u_{\varepsilon, \mathcal{T}}\right\|_{W_{0}^{1, p}(\Omega)} & \leq C \min \left\{\frac{1}{(2-p)^{1 / p}}\left(\frac{1}{C^{2-p}}-\frac{2 p \varepsilon^{2-p}}{p+2}\right)^{1 / p}, h\left(\frac{\varepsilon^{2-2 p}}{2-2 p}\right)^{1 / p}\right\} .
\end{aligned}
$$

All computations have been performed with the C++ library deal. II [4].

Solution for $\varepsilon=0.1$ and $\varepsilon=0.0001$

Figure: Exact solution for $\varepsilon=0.1$ (left) and $\varepsilon=0.0001$ (right).

Convergence in the $H_{0}^{1}(\Omega)$－norm with respect to h

Convergence in the $W_{0}^{1,1}(\Omega)$-norm with respect to h

Blow-up in the $H_{0}^{1}(\Omega)$-norm with respect to ε

Blow-up in the $W_{0}^{1,1}(\Omega)$-norm with respect to ε

Conclusion

- We want to approximate the solution of the Poisson's equation with a point-source forcing term in a bounded polygonal domain $\Omega \subset \mathbb{R}^{2}$;
- In this aim, an approximation $f_{\varepsilon}=\frac{1}{\mu\left(D_{\varepsilon}\right)} \chi_{D_{\varepsilon}}$ of the Dirac measure has been considered $\left(B_{c \varepsilon}(0) \subset D_{\varepsilon} \subset B_{C \varepsilon}(0)\right.$ star-shaped);
- The well-posedness of the elliptic problem in $W_{0}^{1, p}(\Omega)-W_{0}^{1, q}(\Omega)$ with $\frac{1}{p}+\frac{1}{q}=1$ and $1<p<\infty$ has been treated;
- We have introduced a FE approximation considering continuous linear polynomials (with convergence result);
- Some theoretical results concerning the dependence with respect to ε for the constant appearing in the FE convergence have been proposed (giving crucial informations about the preasymptotic phase);
- Numerical results in the particular case of $\Omega=B_{1}(0)$ and $D_{\varepsilon}=B_{\varepsilon}(0)$ have been presented.

Thank you for your attention.

References

R. A. Adams and J. J. Fournier, Sobolev spaces, vol. 140.Academic press, 2003.
宔
D. Braess, Finite elements: Theory, fast solvers, and applications in solid mechanics.
Cambridge University Press, 2001.R. Verfürth, A posteriori error estimation techniques for finite element methods.
Oxford University Press, 2013.
䍰 W. Bangerth, R. Hartmann, and G. Kanschat, "deal.II - a General Purpose Object Oriented Finite Element Library," ACM Trans. Math. Softw., vol. 33, no. 4, pp. 24/1-24/27, 2007.

[^0]: ${ }^{1}$ Seminar for Applied Mathematics, Swiss Federal Institute of Technology Zürich

