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Bayesian inverse problems [Stuart, 2010]

Problem: given noisy observation data for system output, to calibrate unknown input.

X – (separable Banach) space for unknown input ;
Y – (separable Banach) space for system output.

Given a forward operator (e.g. PDEs, system of ODEs, etc.)

G : X → Y,

and a observation operator (a set of sensors, e.g. pointwise data, Gaussian average)

O : Y → RK ,

with K ∈ N. We define the map from unknown input to finite data

G := O ◦ G : X → RK .

The inverse problem: find u ∈ X given the noisy observation

δ = G(u) + η,

where η ∈ RK represents the noise, e.g. drawn from the Gaussian measure N (0,Γ).
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Bayesian inverse problems [Stuart, 2010]

Bayesian approach: given data δ, to update the distribution of the unknown input u.

Let u be a random variable with Lebesgue density ρ0(u);
Assume the noise η is independent of u with Lebesgue density ρ(η);
So (u, δ) is a random variable with Lebesgue density ρ(δ − G(u))ρ0(u).

Bayes’ theorem
Assume that the probability of δ is positive, i.e.

Z :=

∫
X
ρ(δ − G(u))ρ0(u)du > 0,

Then u|δ is a random variable with Lebesgue density ρδ given by

ρδ(u)︸ ︷︷ ︸
posterior density

=
1
Z
ρ(δ − G(u))︸ ︷︷ ︸

likelihood

ρ0(u)︸ ︷︷ ︸
prior density

. (1)

Given data δ and the prior density ρ0(u), to determine the posterior density ρδ(u).
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

Parametric representation of the unknown input u.

The input u admits parametric representation, e.g. with an affine structure

u(y) = ψ0 +
∑
j∈J

yjψj, ψ0, ψj ∈ X, yj ∼ U(−1, 1),

being J a finite or countably infinite set, i.e. J = {1, . . . , J} with J ∈ N, or J = N.

Parametric problem: let X and Y be two reflexive Banach spaces with duals X ′,Y ′;
let A : X ×Y → R denote a bilinear form and F : Y → R a linear functional; we consider

find p(y) ∈ X such that A(p(y), v; y) = F(v) ∀v ∈ Y, (2)

where we assume that the bilinear form admits the affine structure

Affine parametrization: A(w, v; y) = A0(w, v) +
∑
j∈J

yjAj(w, v). (3)

inf-sup condition: inf
0 6=w∈X

sup
0 6=v∈Y

|A(w, v; y)|
||w||X ||v||Y

= β(y).

diffusion problem, Stokes flow, linear elasticity, acoustic problem, electromagnetics, etc.

Example: Aj(w, v) =

∫
D
ψj(x)∇w(x) · ∇v(x)d(x) ∀w, v ∈ H1

0(D), j ∈ {0} ∪ J.
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

Let U = [−1, 1]J and B be the σ-algebra on U. We equip (U,B) with the prior measure

µ0(dy) =
⊗
j∈J

dyj

2
. (4)

By Radon–Nikodym theorem, the posterior measure is given by

dµδ

dµ0
(y) =

1
Z

Θ(y), (5)

where
Θ(y) := ρ(δ −O(p(y))) and Z := E[Θ] =

∫
U

Θ(y)µ0(dy). (6)

In the case η ∼ N (0,Γ), we have

Θ(y) =
1√

(2π)K |Γ|
exp
(
−1

2
(δ −O(p(y)))>Γ−1(δ −O(p(y)))

)
.

Given the prior measure µ0 and the data δ, to determine the posterior measure µδ.
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Bayesian inverse problems: computational aspects

Computational quantities of interests (QoIs): 1. pointwise Θ(y) and 2. integration Z.

Computational requests
1 Given any y ∈ U, solve the parametric problem (2), and evaluate Θ(y) through (6).
2 Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Computational challenges
Curse-of-dimensionality: when the dimension |J| of the parameter space becomes
very high or infinite, too many (millions or more) solutions are needed, e.g. MC.

Large-scale computation: one solution is very expensive (taking hours by the
fastest supercomputers), so only a few tens or hundreds of them are affordable.

Computational opportunities
Sparsity: the dimensions are anisotropic and/or only have low mutual interaction.

Reducibility: the solution/QoIs live in an intrinsically low-dimensional manifold.

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 7 / 29



Bayesian inverse problems: computational aspects

Computational quantities of interests (QoIs): 1. pointwise Θ(y) and 2. integration Z.

Computational requests
1 Given any y ∈ U, solve the parametric problem (2), and evaluate Θ(y) through (6).
2 Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Computational challenges
Curse-of-dimensionality: when the dimension |J| of the parameter space becomes
very high or infinite, too many (millions or more) solutions are needed, e.g. MC.

Large-scale computation: one solution is very expensive (taking hours by the
fastest supercomputers), so only a few tens or hundreds of them are affordable.

Computational opportunities
Sparsity: the dimensions are anisotropic and/or only have low mutual interaction.

Reducibility: the solution/QoIs live in an intrinsically low-dimensional manifold.

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 7 / 29



Bayesian inverse problems: computational aspects

Computational quantities of interests (QoIs): 1. pointwise Θ(y) and 2. integration Z.

Computational requests
1 Given any y ∈ U, solve the parametric problem (2), and evaluate Θ(y) through (6).
2 Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Computational challenges
Curse-of-dimensionality: when the dimension |J| of the parameter space becomes
very high or infinite, too many (millions or more) solutions are needed, e.g. MC.

Large-scale computation: one solution is very expensive (taking hours by the
fastest supercomputers), so only a few tens or hundreds of them are affordable.

Computational opportunities
Sparsity: the dimensions are anisotropic and/or only have low mutual interaction.

Reducibility: the solution/QoIs live in an intrinsically low-dimensional manifold.

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 7 / 29



Bayesian inverse problems: computational aspects

Computational quantities of interests (QoIs): 1. pointwise Θ(y) and 2. integration Z.

Computational requests
1 Given any y ∈ U, solve the parametric problem (2), and evaluate Θ(y) through (6).
2 Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Computational challenges
Curse-of-dimensionality: when the dimension |J| of the parameter space becomes
very high or infinite, too many (millions or more) solutions are needed, e.g. MC.

Large-scale computation: one solution is very expensive (taking hours by the
fastest supercomputers), so only a few tens or hundreds of them are affordable.

Computational opportunities
Sparsity: the dimensions are anisotropic and/or only have low mutual interaction.

Reducibility: the solution/QoIs live in an intrinsically low-dimensional manifold.

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 7 / 29



Sparse grid approximation: a first look (see also Robert’s talk)

Sparsity: low mutual dimensional interaction and/or anisotropic property

tensor grid sparse grid anisotropic sparse grid
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Sparse grid approximation: univariate hierarchical construction

Let Iq denote a univariate interpolation operator given by

Iqg =

m(q)∑
k=1

g(yq
k)lyq

k
(y) vs Iqg =

q∑
i=1

4ig ≡
q∑

i=1

(Ii − Ii−1)g, (7)

where q is grid level, m(q) is # nodes, mi
4 is index set for additional nodes at level i.

Iqg =

q∑
i=1

(Iig− Ii ◦ Ii−1︸ ︷︷ ︸
Ii−1

g) =

q∑
i=1

∑
k∈mi
4

(g(yi
k)− Ii−1g(yi

k))︸ ︷︷ ︸
si
k

li
k(y), (8)
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3
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Sparse grid approximation: Smolyak sparse grid [Smolyak, 1963]

Sqg =
∑
|i|≤q

(
4i1

1 ⊗ · · · ⊗ 4
iJ
J

)
g =

q∑
|i|=J

4S|i|g(y),

4Sqg(y) =
∑
|i|=q

∑
k∈mi
4

(
g(yi1

k1
, . . . , yiJ

kJ
)− Sq−1g(yi1

k1
, . . . , yiJ

kJ
)
)

︸ ︷︷ ︸
si
k

(
li1
k1

(y1)⊗ · · · ⊗ liJ
kJ

(yJ)
)

︸ ︷︷ ︸
lik

.

|i| = 2

(i1, i2) = (1, 1)

(i1, i2) = (1, 2)

|i| = 3

(i1, i2) = (2, 1) (i1, i2) = (3, 1)

(i1, i2) = (1, 3)

|i| = 4

(i1, i2) = (2, 2)

(i1, i2) = (2, 3)

(i1, i2) = (3, 2)

(i1, i2) = (3, 3)

Hierarchical construction of Smolyak sparse grid.
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Sparse grid approximation: adaptive SG [Gerstner and Griebel, 2003]

Λs = {i ∈ NK
+ : |i| ≤ q} → ΛM = {i ∈ NK

+ : i admissible }.

Admissible: if i ∈ ΛM then i− ej ∈ ΛM for any j ∈ J.
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Admissible set of indices for dimension adaptive sparse grid construction.
Colored square: active index set A ; red square: the index to process in next step.

SΛM g(y) =
∑

i∈ΛM

∑
k∈mi
4

(
g(yi

k)− SΛM\{i}g(yi
k)
)

︸ ︷︷ ︸
si
k

li
k(y). (9)

E[g] ≈ E[SΛM g] =
∑

i∈ΛM

∑
k∈mi
4

si
kE[li

k] =
∑

i∈ΛM

∑
k∈mi
4

si
kwi

k. (10)
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+ : i admissible }.

Admissible: if i ∈ ΛM then i− ej ∈ ΛM for any j ∈ J.
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Admissible set of indices for dimension adaptive sparse grid construction.
Colored square: active index set A ; red square: the index to process in next step.

SΛM g(y) =
∑

i∈ΛM

∑
k∈mi
4

(
g(yi

k)− SΛM\{i}g(yi
k)
)

︸ ︷︷ ︸
si
k

li
k(y). (9)

E[g] ≈ E[SΛM g] =
∑

i∈ΛM

∑
k∈mi
4

si
kE[li

k] =
∑

i∈ΛM

∑
k∈mi
4

si
kwi

k. (10)
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Sparse grid approximation: error indicators and estimators

Interpolation error indicator

i = argmax
i′∈A

Ei(i′), with Ei(i′) =
1
|mi′
4|

∑
k∈mi′
4

|si′
k |.

Integration error indicator

i = argmax
i′∈A

Ee(i′), with Ee(i′) =
1
|mi′
4|

∣∣∣∣∣∣∣
∑

k∈mi′
4

si′
k wi′

k

∣∣∣∣∣∣∣ .

Interpolation and integration error estimators

Ei(A ) = max
i∈A

max
k∈mi
4

|si
k| and Ee(A ) =

∣∣∣∣∣∣∣
∑
i∈A

∑
k∈mi
4

si
kwi

k

∣∣∣∣∣∣∣ .
Verification algorithm for stagnation problem [Chen and Quarteroni, 2014].
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High-fidelity approximation: large-scale computation

High-fidelity approximation spaces: Xh ⊂ X and Yh ⊂ Y;

Let (wn
h)
N
n=1 and (vn

h)
N
n=1 denote the bases of Xh and Yh;

The high-fidelity solution ph(y) can be expanded on the bases (wn
h)
N
n=1 as

ph(y) =

N∑
n=1

pn
h(y)wn

h, (11)

with ph(y) = (p1
h(y), . . . , pNh (y))>. The high-fidelity (Petrov)-Galerkin approximation

given any y ∈ U, find ph(y) ∈ Xh such that A(ph(y), vh; y) = F(vh) ∀vh ∈ Yh. (12)

Let (Aj
h)nn′ := Aj(wn

h, v
n′
h ) 1 ≤ n, n′ ≤ N , fh = (F(v1

h), . . . ,F(vNh ))>, then

given any y ∈ U, find ph(y) ∈ RN such that

A0
h +

∑
j∈J

yjAj
h

 ph(y) = fh, (13)

which is a N ×N system, requiring large-scale computation when N is very large.
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Reduced basis approximation: low-dimensional manifold

Reducibility: the solution manifoldM = {ph(y) ∈ Xh, y ∈ U} is low-dimensional.

Mathematically, the best approximation error decays very fast

Kolmogorov N-width: dN(Xh,M) := inf
ZN⊂Xh

sup
v∈M

inf
w∈ZN

||v− w||X ≡ inf
ZN⊂Xh

dist(ZN ,M).

Look for a low-dimensional reduced basis space XN ⊂M such that

reduced basis error: σN(XN ,M) := sup
v∈M

inf
w∈XN

||v− w||X ≡ dist(XN ,M),

converges with rate not far from (ideally achieves) that of the best approximation error.
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Reduced basis approximation: reduction [Patera and Rozza, 2007]

Reduced basis approximation spaces: XN ⊂ Xh and YN ⊂ Yh;

Let (wn
N)N

n=1 and (vn
N)N

n=1 denote the bases of XN and YN ;

The reduced solution ph(y) can be expanded on the bases (wn
N)N

n=1 as

pN(y) =
N∑

n=1

pn
N(y)wn

N , (14)

with pN(y) = (p1
N(y), . . . , pN

N(y))>. The reduced basis (Petrov)-Galerkin approximation

given any y ∈ U, find pN(y) ∈ XN such that A(pN(y), vN ; y) = F(vN) ∀vN ∈ YN . (15)

Let W = (w1
N , . . . ,wN

N) and V = (v1
N , . . . , vN

N), Aj
N = V>Aj

hW, j ∈ {0} ∪ J; fN = V>fh.

given any y ∈ U, find pN(y) ∈ RN such that

A0
N +

∑
j∈J

yjAj
N

 pN(y) = fN . (16)

which is a N × N system, needs small-scale computation as N � N , e.g. (10 ∼ 100).
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Reduced basis approximation: construction of reduced spaces

Greedy algorithm [Patera and Rozza, 2007]

Initialize X1 = span{ph(y(1))} at some random sample y(1), then for N = 2, 3, . . . ,

y(N) = argsup
y∈U

||ph(y)− pN−1(y)||X or y(N) = argsup
y∈U

|Θh(y)−ΘN−1(y)| (17)

and the reduced space XN can be constructed by the snapshots

XN = XN−1 ⊕ span{ph(y(N))}. (18)

Gram–Schmidt process→ orthnormal bases (wn
N)N

n=1 of XN for better stability of AN(y).

In case of symmetric coercive A, we can directly take YN = XN ;
otherwise, we solve a ‘supremizer’ problem (to guarantee the inf-sup condition)

given y ∈ U, find vn
N(y) ∈ Yh such that (vn

N(y), vh)Yh = A(wn
N , vh; y) ∀vh ∈ Yh, (19)

Let Aj,j′

N = (Aj
hW)>M−1

h Aj′

h W, and fj
N = (Aj

hW)>M−1
h fh; we solve the N×N systemA0,0

N + 2
∑
j∈J

yjA0,j
N +

∑
j∈J

∑
j′∈J

yjyj′Aj,j′

N

 pN(y) = f0
N +

∑
j∈J

yjfj
N . (20)
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Reduced basis approximation: a posteriori error estimators I

We consider the error estimator for the nonlinear, nonaffine QoI. Recall by definition

Θh(y) =
1√

(2π)K |Γ|
exp
(
−1

2
(δ −O(ph(y)))>Γ−1(δ −O(ph(y)))

)
,

which can be expanded as

Θh(y) = ΘN(y) +
∂Θh

∂ph

∣∣∣
pN(y)

(ph(y)− pN(y)) + O(||ph(y)− pN(y)||2X ). (21)

We can estimate the error by

|Θh(y)−ΘN(y)| ≈
∣∣∣∂Θh

∂ph

∣∣∣
pN(y)

(ph(y)−pN(y))
∣∣∣ ≤ ∣∣∣∣∣∣∂Θh

∂ph

∣∣∣
pN(y)

∣∣∣∣∣∣
X ′
||ph(y)− pN(y)||X =: 4(1)

N (y).

Here, the reduced solution error can be bounded by

||ph(y)− pN(y)||X ≤
||Rh(·; y)||Y′

βh(y)
=: 4p

N(y),

where the residual Rh(·; y) ∈ Y ′, defined as

Rh(vh; y) = F(vh)− A(pN(y), vh; y) ∀vh ∈ Yh,

and the inf-sup constant βh(y) is uniformly bounded from below by βLB
h .
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Reduced basis approximation: a posteriori error estimators II

We consider a dual problem corresponding to the primal problem (12) reads as

given any y ∈ U, find ψh(y) ∈ Yh such that A(wh, ψh; y) =
∂Θh

∂ph

∣∣∣
pN(y)

(wh) ∀wh ∈ Xh.

We may approximate this high-fidelity solution with a reduced dual solution by solving

find ψNdu (y) ∈ YNdu such that A(wdu
Ndu , ψNdu ; y) =

∂Θh

∂ph

∣∣∣
pN(y)

(wdu
Ndu ) ∀wdu

Ndu ∈ XNdu . (22)

The second error estimator (dual-weighted residual) is simply defined as

4(2)
N (y) := R(ψNdu (y); y) = f>h WduψNdu

(y)−
∑

j∈{0}∪J

yj(pN(y))>W>Aj
hWduψNdu

(y) (23)

A closer look at the residual (by Galerkin orthogonality):

R(ψh(y); y) = A(ph(y)− pN(y), ψh(y); y) =
∂Θh

∂ph

∣∣∣
pN(y)

(ph(y)− pN(y)), (24)

which is nothing but the first term in the expansion. Moreover,

R(ψh(y); y)−4(2)
N (y) = R(edu

h (y); y) = A(eh(y), edu
h (y); y) ≤ γh(y)||eh(y)||X ||edu

h (y)||Y , (25)

where we denote the reduced errors eh(y) = ph(y)− pN(y) and edu
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Reduced basis approximation: a posteriori error estimators II
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Reduced basis approximation: a posteriori error estimators III

We may propose the use of a (improved/corrected) reduced output

Θc
N(y) = ΘN(y) +4(2)

N (y). (26)

The last term in the expansion can be further expanded as

O(||ph(y)−pN(y)||2X ) =
1
2
∂2Θh

∂p2
h

∣∣∣
pN(y)

(ph(y)− pN(y), ph(y)− pN(y))+O(||ph(y)−pN(y)||3X ).

So that the third a posteriori error estimator can be given by

4(3)
N (y) := max

{
4(4)

N (y),4(5)
N (y)

}
, (27)

where (note |Θh(y)−Θc
N(y)| ≈ ( first term −4(2)

N ) + second term )

4(4)
N (y) := γh(y)||eh(y)||X ||edu

h (y)||Y , and 4(5)
N (y) := γ′h(y)||eh(y)||2X . (28)

Note that4(4)
N and4(5)

N exhibit a quadratic dependence on the reduced solution error.

The second (dual-weighted residual) error estimator is the cheapest to evaluate.
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Reduced basis approximation: an adaptive greedy algorithm

Adaptively construct the reduced bases using sparse grid nodes as training samples.

Adaptive greedy algorithm [Chen and Quarteroni, 2014]

Initialization: specify tolerance εt, set N = 1, solve the high-fidelity problem at y1
1, the

root node in the sparse grid, and construct the first reduced space X1 = span{ph(y1
1)};

While sparse grid construction continues
at each new index i, update the training set Ξtrain = Ξi

4;
While maxy∈Ξtrain 4N(y) ≥ εt

update Ξtrain as Ξtrain = Ξtrain \ {y ∈ Ξtrain : 4N(y) < εt};
set y(N+1) = argmaxy∈Ξtrain

4N(y);
solve high-fidelity problem at y(N+1) to obtain ph(y(N+1));
update XN+1 = XN ⊕ span{ph(y(N+1))};
set N = N + 1.

end
end

Replace high-fidelity solve by reduced basis solve at almost all sparse grid nodes.
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A priori error estimates

Assumption [Schwab and Stuart, 2012]

There exist 0 < amin ≤ amax <∞, such that ∀z ∈ U :=
⊗

j∈J{z ∈ CJ : |zj| ≤ 1}

amin ≤ R(u(x, z)) ≤ |u(x, z)| ≤ amax, ∀x ∈ D (29)

There exists a constant 0 < α < 1, such that (recall u(y) = ψ0 +
∑

j∈J yjψj)∑
j∈J

||ψj||αL∞(D) <∞. (30)

Global approximation
The QoI Θ(y) and Z are approximated by

Θ(y) = Θ(y)−Θs(y)︸ ︷︷ ︸
interpolation error

+ Θs(y)−Θs,h(y)︸ ︷︷ ︸
high-fidelity error

+ Θs,h(y)−Θs,h,r(y)︸ ︷︷ ︸
reduced basis error

+Θs,h,r(y),

and
Z = Z − Zs︸ ︷︷ ︸

quadrature error

+ Zs − Zs,h︸ ︷︷ ︸
high-fidelity error

+ Zs,h − Zs,h,r︸ ︷︷ ︸
reduced basis error

+Zs,h,r.
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A priori error estimates

Sparse grid approximation error [Schillings and Schwab, 2013]

|Θ(y)−Θs(y)| ≤ CM−s and |Z − Zs| ≤ CM−s, s =
1
α
− 1.

High-fidelity approximation error

|Θs(y)−Θs,h(y)| ≤ Cht and |Zs − Zs,h| ≤ Cht, t = min{tpolynomial, tregularity}.

RB approximation error [Binev et al., 2011, Cohen and DeVore, 2014]

|Θs,h(y)−Θs,h,r(y)| ≤ CN−s and |Zs,h − Zs,h,r| ≤ CN−s, s =
1
α
− 1.

Global approximation error

|Θ(y)−Θs,h,r(y)| ≤ C0M−s + C1ht + C2N−s.

|Z − Zs,h,r| ≤ C0M−s + C1ht + C2N−s.
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Numerical experiments: sparse grid approximation error

We consider a diffusion problem with K = 9 observations. We take J = {1, . . . , 64} and
ψ0 = 1 and ψj = 0.95j−2χDj , j ∈ J, so α > 1/2 and the rate −s = −(1/α− 1) > −1.
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Figure: Interpolation error estimator of the dimension-adaptive sparse grid approximation
constructed by the interpolation error indicator (left) and the integration error indicator (right).
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Figure: Integration error estimator of the dimension-adaptive sparse grid approximation
constructed by the interpolation error indicator (left) and the integration error indicator (right).
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Numerical experiments: high-fidelity approximation error
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Figure: Left: decay of finite element error with respect to the mesh size (1/h); right: change of the
number of reduced bases (constructed with tolerance 10−7) with respect to the mesh size (1/h).
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Numerical experiments: effectivity of different error estimators

effectivity =
4N

|Θh(y)−ΘN(y)|
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Figure: Left: effectivity of the three error estimators; right: the true reduced output error (truncated
above 10−14) and the effectivity of the dual-weighted residual with respect to this error.
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Numerical experiments: effectivity of different error estimators
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Figure: Left: effect of correction E2/E1 with E2 = |Θh(y)−Θc
N(y)| and E1 = |Θh(y)−ΘN(y)|; right:

effectivity of4(4)
N and4(5)

N defined in (28) with respect to the corrected output error.
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Numerical experiments: reduced basis approximation error
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Figure: Decay of reduced basis approximation error with respect to the number reduced bases;
left: 64 dimensions, fitted rates for the first 32 bases and the other 68 bases; right: 256 D.
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Numerical experiments: reduced basis approximation error
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Conclusion and perspective

Conclusion
Curse-of-dimensionality can be broken by sparsity – adaptive sparse grid.

Large-scale computation can be harnessed by reducibility – reduced basis.

Goal-oriented error estimator (dual-weighted residual) achieves excellent
effectivity for the nonlinear and nonaffine output in Bayesian inverse problems.

The adaptive sparse grid approximation error and particularly the reduced basis
approximation error converges faster in practice than predicted by theory.

Perspective
Work on the improvement of the theoretical estimate for faster convergence.

Sparse grid reduced basis approximation for nonlinear and nonaffine problems.

RB can be efficiently combined with any other quadrature rule, e.g. QMC.

A global framework for adaptive approximation in balancing all the errors.

P. Chen and Ch. Schwab, Sparse grid and reduced basis approximation for Bayesian
inverse problems, manuscript, 2014.
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