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Bayesian inverse problems [Stuart, 2010]

‘ Problem: given noisy observation data for system output, to calibrate unknown input. ‘

@ X — (separable Banach) space for unknown input ;
@ Y — (separable Banach) space for system output.
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Bayesian inverse problems [Stuart, 2010]

‘ Problem: given noisy observation data for system output, to calibrate unknown input. ‘

@ X — (separable Banach) space for unknown input ;
@ Y — (separable Banach) space for system output.

Given a forward operator (e.g. PDEs, system of ODEs, etc.)
G:X—Y,

and a observation operator (a set of sensors, e.g. pointwise data, Gaussian average)
O:Y — R,

with K € N. We define the map from unknown input to finite data

g::OoG:XH]RK.
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Bayesian inverse problems [Stuart, 2010]

‘ Problem: given noisy observation data for system output, to calibrate unknown input. ‘

@ X — (separable Banach) space for unknown input ;
@ Y — (separable Banach) space for system output.
Given a forward operator (e.g. PDEs, system of ODEs, etc.)

G:X—Y,

and a observation operator (a set of sensors, e.g. pointwise data, Gaussian average)
O:Y — R,

with K € N. We define the map from unknown input to finite data

g::OoG:XH]RK.

The inverse problem: find u € X given the noisy observation
6=G(u)+mn,

where n € R¥ represents the noise, e.g. drawn from the Gaussian measure A (0, T).
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Bayesian inverse problems [Stuart, 2010]

’ Bayesian approach: given data 4, to update the distribution of the unknown input u. ‘

@ Let u be a random variable with Lebesgue density po(u);
@ Assume the noise 7 is independent of u with Lebesgue density p(n);
@ So (u,9) is a random variable with Lebesgue density p(§ — G(u))po(u).
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Bayesian inverse problems [Stuart, 2010]

’ Bayesian approach: given data 4, to update the distribution of the unknown input u. ‘

@ Let u be a random variable with Lebesgue density po(u);
@ Assume the noise 7 is independent of u with Lebesgue density p(n);
@ So (u,9) is a random variable with Lebesgue density p(§ — G(u))po(u).

Bayes’ theorem

Assume that the probability of ¢ is positive, i.e.
z:= | p(6 - G >0,
X

Then u|6 is a random variable with Lebesgue density p° given by

5 1
pru) =2 p(6—Gw) pou) . (1)
N—— ————
posterior density likelihood prior density
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Bayesian inverse problems [Stuart, 2010]

’ Bayesian approach: given data 4, to update the distribution of the unknown input u. ‘

@ Let u be a random variable with Lebesgue density po(u);
@ Assume the noise 7 is independent of u with Lebesgue density p(n);
@ So (u,9) is a random variable with Lebesgue density p(§ — G(u))po(u).

Bayes’ theorem

Assume that the probability of ¢ is positive, i.e.
z:= | p(6 - G >0,
X

Then u|6 is a random variable with Lebesgue density p° given by

5 1
pru) =2 p(6—Gw) pou) . (1)
N—— ————
posterior density likelihood prior density

Given data ¢ and the prior density po(u), to determine the posterior density p° (u).

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 4/29



Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

‘ Parametric representation of the unknown input u. ‘

The input u admits parametric representation, e.g. with an affine structure
u(y) =vo+ > vt vo, 5 €X, y~ULI),
Jjel
being J a finite or countably infinite set, i.e. J = {1,...,J} withJ € N,or J = N.
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

‘ Parametric representation of the unknown input u. ‘

The input u admits parametric representation, e.g. with an affine structure
u(y) =vo+ > vt vo, 5 €X, y~ULI),
Jjel
being J a finite or countably infinite set, i.e. J = {1,...,J} withJ € N,or J = N.

Parametric problem: let X’ and ) be two reflexive Banach spaces with duals X', )’;
letA: X x Y — R denote a bilinear form and F : )V — R a linear functional; we consider

find p(y) € X suchthat A(p(y),v;y) = F(v) Yve, 2)
where we assume that the bilinear form admits the affine structure
Affine parametrization: A(w,v;y) = Ao(w,v) + > _ yd;(w,v). (3)
Jjel
inf-sup condition: inf sup 1AGw, viy)| = B(y).
0AWEX o,ey | W2 [V]]y

diffusion problem, Stokes flow, linear elasticity, acoustic problem, electromagnetics, etc.
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

‘ Parametric representation of the unknown input u. ‘

The input u admits parametric representation, e.g. with an affine structure
u(y) =vo+ > vt vo, 5 €X, y~ULI),
Jjel
being J a finite or countably infinite set, i.e. J = {1,...,J} withJ € N,or J = N.

Parametric problem: let X’ and ) be two reflexive Banach spaces with duals X', )’;
letA: X x Y — R denote a bilinear form and F : )V — R a linear functional; we consider

find p(y) € X suchthat A(p(y),v;y) = F(v) Yve, 2)
where we assume that the bilinear form admits the affine structure
Affine parametrization: A(w,v;y) = Ao(w,v) + > _ yd;(w,v). (3)
Jjel
inf-sup condition: inf sup 1AGw, viy)| = B(y).
0AWEX o,ey | W2 [V]]y

diffusion problem, Stokes flow, linear elasticity, acoustic problem, electromagnetics, etc.

Example: A;(w,v) = /ij(x)VW(x) -Vv(x)d(x) Yw,v € Hy(D), j € {0} U
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

Let U = [—1,1]" and B be the o-algebra on U. We equip (U, B) with the prior measure

poldy) = QY. @

Jjel
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

Let U = [—1,1]" and B be the o-algebra on U. We equip (U, B) with the prior measure

poldy) = QY. @

Jjel

By Radon—Nikodym theorem, the posterior measure is given by

)
Pe) = 700) )
where
0) = p(6 — Op(y))) and Z := E[6] = / O ) uo(dy)- (6)

In the case  ~ N (0,T"), we have

1 1 T -1
00) = e (-3¢ - 0O T - W)
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Bayesian inverse problems: parametrization [Schwab and Stuart, 2012]

Let U = [—1,1]" and B be the o-algebra on U. We equip (U, B) with the prior measure

poldy) = QY. @
j€l
By Radon—Nikodym theorem, the posterior measure is given by
92 (5) = 500), )
where
O0) = pl6 = O(p(x)) and 2 := EI6] = [ O)(dy). ®)

In the case  ~ N (0,T"), we have

1 1 T -1
00) = e (-3¢ - 0O T - W)

Given the prior measure 1 and the data 6, to determine the posterior measure 1°. ‘
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Bayesian inverse problems: computational aspects

‘ Computational quantities of interests (Qols): 1. pointwise ©(y) and 2. integration Z. ‘
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Bayesian inverse problems: computational aspects

‘ Computational quantities of interests (Qols): 1. pointwise ©(y) and 2. integration Z. ‘

Computational requests

@ Given any y € U, solve the parametric problem (2), and evaluate ©(y) through (6).
@ Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 7129



Bayesian inverse problems: computational aspects

‘ Computational quantities of interests (Qols): 1. pointwise ©(y) and 2. integration Z. ‘

Computational requests

@ Given any y € U, solve the parametric problem (2), and evaluate ©(y) through (6).
@ Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Computational challenges

@ Curse-of-dimensionality: when the dimension |J| of the parameter space becomes
very high or infinite, too many (millions or more) solutions are needed, e.g. MC.

@ Large-scale computation: one solution is very expensive (taking hours by the
fastest supercomputers), so only a few tens or hundreds of them are affordable.
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Bayesian inverse problems: computational aspects

‘ Computational quantities of interests (Qols): 1. pointwise ©(y) and 2. integration Z. ‘

Computational requests
@ Given any y € U, solve the parametric problem (2), and evaluate ©(y) through (6).
@ Evaluate Z by some integration scheme, e.g. Monte Carlo, Gauss quadrature rule.

Computational challenges

@ Curse-of-dimensionality: when the dimension |J| of the parameter space becomes
very high or infinite, too many (millions or more) solutions are needed, e.g. MC.

@ Large-scale computation: one solution is very expensive (taking hours by the
fastest supercomputers), so only a few tens or hundreds of them are affordable.

Computational opportunities

@ Sparsity: the dimensions are anisotropic and/or only have low mutual interaction.
@ Reducibility: the solution/Qols live in an intrinsically low-dimensional manifold.

N

7129
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Sparse grid approximation: a first look (see also Robert’s talk)

Sparsity: low mutual dimensional interaction and/or anisotropic property ‘

tensor grid sparse grid anisotropic sparse grid
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Sparse grid approximation: univariate hierarchical construction

Let Z, denote a univariate interpolation operator given by

m(q) q q
Tig=) s0Dlg(y) vs Zg=3) ANg=Y (L-T)g (7)
k=1 i=1 i=1

where ¢ is grid level, m(q) is # nodes, m's is index set for additional nodes at level i.

s I I Iy s ;

1 v

3 w3 w2 3
3 Yi Y5 Yi Yi
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Sparse grid approximation: univariate hierarchical construction

Let Z, denote a univariate interpolation operator given by
m(q)
Tg=) s0Dlg(y) vs ZIg= Z Ng= Z (T — Ti-1)e, 7
k=1 i=1

where ¢ is grid level, m(q) is # nodes, m's is index set for additional nodes at level i.

q
T,g=» (Tg—TioLi1g) E > ( Zi1800) k() (8)
— —— \_v—’
i=1 i=1 kEm‘ A
Zi si
1 b by by by by 1 i
1 13
13
0 1 0 1
yi 3 i yi 3 yi i il v 3
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Sparse grid approximation: univariate hierarchical construction

Let Z, denote a univariate interpolation operator given by

m(q) q q
Tig=) s0Dlg(y) vs Zg=3) ANg=Y (L-T)g (7)
k=1 i=1 i=1
where ¢ is grid level, m(q) is # nodes, m'x is index set for additional nodes at level i.
> >3 (b =T g0
Zig=) (Tig—TLoLi-18) = (g0k) = Zi—18(k)) l(y), 8

Sy

3 2
Y2 Y2
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Sparse grid approximation: Smolyak sparse grid [Smolyak, 1963]

q
S,8 = Z (A‘;‘ ® - ® A'/) g= Z ASjiig(y),

lil<q li|=7
_ i i i iy i| iy
ASg) =D (g(yk, e Vi) = Sq—1800 - ,yk,)) (lkl el (y;)) .
lil=q kemi, . -
% I
lil=2 li| =3 | =4 @
i =D | | Gm=@n| | =@
® ®|e ° °
- - .- - - -
‘ ‘
i =02)| | i =@2)| 1= @2
: : o ° [ ] ° [ ]
‘ ‘
° ey
° « e i T
(invin) = (1,3) | 1 (inia) = (2.3) 1 1 (in,ia) = (3.3) 1
i i i o
i P i
E 5 : .
,,,,,,,,,,,, °

Hierarchical construction of Smolyak sparse grid.
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Sparse grid approximation: adaptive SG [Gerstner and Griebel, 2003]

Ay ={ieN{ :ji| <q} = Ay = {i € N§ :iadmissible }.

Admissible: if i € Ay theni —e; € Ay forany j € I. \

X

X

XX

XXX

XXX

XXX XY

XX XXX

KX XXX XX R
HKXKHAKX XXX
XXX XX XXX K
XXXXX XXX XA
XX XXX XXX X XK

KX

XX XXX
KXARXR XK KX K XX
XX XXX XXX XXX

X
XK AKX XXX XXX X
XXX XX XX XXX XX B

14]
13|
12|
1"
10|

12345678 91011121314

12345678 91011121314

12345678 091011121314

12345678 091011121314

Admissible set of indices for dimension adaptive sparse grid construction.
Colored square: active index set «7; red square: the index to process in next step.
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Sparse grid approximation: adaptive SG [Gerstner and Griebel, 2003]

Ay ={ieN{ :ji| <q} = Ay = {i € N§ :iadmissible }.

Admissible: if i € Ay theni —e; € Ay forany j € I. \

X

X

XX

XXX

XXX

XXX XY

XX XXX

KX XXX XX R
HKXKHAKX XXX
XXX XX XXX K
XXXXX XXX XA
XX XXX XXX X XK

XXXX!E
KXARXR XK KX K XX
XX XXX XXX XXX

14]
13|
12|
1"
10|

9

X
XK AKX XXX XXX X

8|
7|
6|
5|
4
3|
2|
TP XXXXX XXX XXX XX

14]
13|
12|
1"
10|

12345678 91011121314

12345678 91011121314

12345678 091011121314

12345678 091011121314

Admissible set of indices for dimension adaptive sparse grid construction.
Colored square: active index set «7; red square: the index to process in next step.

SWIOEDSES (

Peng Chen (ETH Zurich)

— Sa\i }g(yk)) L(y).

A
i€Ay kem’A

i
Sk

SG & RB for Bayesian Inverse Problems

9)

August 15, 2014, Disentis



Sparse grid approximation: adaptive SG [Gerstner and Griebel, 2003]

Ay ={ieN{ :ji| <q} = Ay = {i € N§ :iadmissible }.
Admissible: if i € Ay theni —e; € Ay forany j € I. \

14 14) 14 14

13 13 13 13

12t X 12t 5 12 12

M X 11X B 11" 1"

10p- XX [ 10F XX XX 10| 10|

9r XXX 9 XX XX 9 9

8 XX XX B XX XX 8 8|

7P XX XX B TEXX XX 7 7T}

B[ XX XXX K . e B XX XX . 6 B XX XXX X
S XXX XXX XK 5 XX XX 5 5 XX XXX X
AP XXX XXX 3 4P XXX 3 4| A AXXXXX X
B XX XXX XXX R 3 XXXX!E 3 3P XX XXX X
2L XX XXX XXX X R 20 XX XARXAK XX XXX 2] XX XXX XXX XXX 20 XX XX XX
1P XXX X XXX X XK XXX XXX X XXX B P XXXXXX XX XXX XX B 1 XX XXX X B

1234567 8091011121314 123 45678091011121314

12345678 091011121314 12345678 091011121314

Admissible set of indices for dimension adaptive sparse grid construction.
Colored square: active index set «7; red square: the index to process in next step.

Snug® =3 > (80k) — Sauna }g<yk>) K. ©)

i€Ay kEm’ ‘
Elg] ~ E[Sa, 8] = Z Z SB[l = Z Z Skewk- (10)
i€Ay k€mA i€y kEmA
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Sparse grid approximation: error indicators and estimators

Interpolation error indicator

i = argmax &(i'), with &(i") = ,/ Z |sk|
i'est
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Sparse grid approximation: error indicators and estimators

Interpolation error indicator

i = argmax &(i'), with &(i") = ,/ E |s,c |.
i'eof i’
E l

Integration error indicator

i = argmax &,(i'), with &,(i") = | A Z siwh |
iredt

il
keniy
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Sparse grid approximation: error indicators and estimators

nterpolation error indicator

i = argmax &(i'), with &(i") = ,/ E \sk |.
i'eof i’
e l

ntegration error indicator

| A\

i = argmax &,(i'), with &,(i") = | A Z siwh |

i'eof i’
kem's

Interpolation and integration error estimators

&(</) = max max |si| and &, (&) = Z Z Skwk| -

icol i
ESIN i€et keni,

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis



Sparse grid approximation: error indicators and estimators

nterpolation error indicator

i = argmax &(i'), with &) = ,, Z \Sk|

i'eof ke l/

| \

ntegration error indicator

i = argmax &,(i'), with &,(i") = | A Z siwh |
iredt

il
keniy

N\

Interpolation and integration error estimators

&(</) = max max |si| and &, (&) = Z Z Skwk| -

icol i
ESIN i€et keni,

Verification algorithm for stagnation problem [Chen and Quarteroni, 2014].
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High-fidelity approximation: large-scale computation

@ High-fidelity approximation spaces: &, C X and )V, C V;
@ Let (w))2, and (v})2, denote the bases of X, and V;
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High-fidelity approximation: large-scale computation

@ High-fidelity approximation spaces: &, C X and )V, C V;
@ Let (w))2, and (v})2, denote the bases of X, and V;

The high-fidelity solution p;(y) can be expanded on the bases (w})\., as
N
pu(y) = D Ph(¥)Wh, (11)
n=1

with pi(y) = (ph(y), ..., pi (v))". The high-fidelity (Petrov)-Galerkin approximation

given any y € U, find p,(y) € X, such that A(pi(y),vi;y) = F(va) Vv € V. (12)
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High-fidelity approximation: large-scale computation

@ High-fidelity approximation spaces: &, C X and )V, C V;
@ Let (w))2, and (v})2, denote the bases of X, and V;

The high-fidelity solution p;(y) can be expanded on the bases (w})\., as

N
pe(y) = > p(y)wi, (11)

n=1
with pi(y) = (ph(y), ..., pi (v))". The high-fidelity (Petrov)-Galerkin approximation

given any y € U, find p,(y) € X, such that A(pi(y),vi;y) = F(va) Vv € V. (12)
Let (A))uw = Ai(wWi, v ) 1 < ' <N By = (F(}), ..., F(i')T, then
given any y € U, find p4(y) € RV such that (A?, + Zy,AQ) pi(y) = £, (13)

JET

which is a N x N system, requiring large-scale computation when N is very large.
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Reduced basis approximation: low-dimensional manifold

Reducibility: the solution manifold M = {p.(y) € X,y € U} is low-dimensional.
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Reduced basis approximation: low-dimensional manifold

Reducibility: the solution manifold M = {p,(y) € X,y € U} is low-dimensional.

Mathematically, the best approximation error decays very fast

Kolmogorov N-width: dy (X, M) := Zlnf sup 1nf [lv—w||x

inf diSt(ZN, M)
veM WEZ ZNCX,
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Reduced basis approximation: low-dimensional manifold

Reducibility: the solution manifold M = {p,(y) € X,y € U} is low-dimensional.

Mathematically, the best approximation error decays very fast

Kolmogorov N-width: dy (X, M) = me sup 1enf [lv—wl||lx = iréfX dist(Zy, M).
veMW ZNC Xy

Look for a low-dimensional reduced basis space Xy C M such that

reduced basis error:  on(Xy, M) := sup inf ||[v —w||x = dist(Xy, M),
ve M WEXN

converges with rate not far from (ideally achieves) that of the best approximation error.
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Reduced basis approximation: reduction [Patera and Rozza, 2007]

@ Reduced basis approximation spaces: Xy C X, and Yy C Vi;
@ Let (wh)Y_, and (viy)Y_, denote the bases of Ay and Y;
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Reduced basis approximation: reduction [Patera and Rozza, 2007]

@ Reduced basis approximation spaces: Xy C X, and Yy C Vi;
@ Let (wh)Y_, and (viy)Y_, denote the bases of Ay and Y;

The reduced solution p,(y) can be expanded on the bases (wi)Y_, as

pnv(y) =D pv()wh, (14)

n=1
with py(y) = (px(¥), - .., PN(») T. The reduced basis (Petrov)-Galerkin approximation

given any y € U, find py(y) € Ay such that A(py(y),vn;y) = F(vw) Vvy € Yv.  (15)
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Reduced basis approximation: reduction [Patera and Rozza, 2007]

@ Reduced basis approximation spaces: Xy C X, and Yy C Vi;
@ Let (wh)Y_, and (viy)Y_, denote the bases of Ay and Y;

The reduced solution p,(y) can be expanded on the bases (wi)Y_, as

pnv(y) =D pv()wh, (14)

n=1
with py(y) = (px(¥), - .., PN(») T. The reduced basis (Petrov)-Galerkin approximation

given any y € U, find py(y) € Ay such that A(py(y),vn;y) = F(vw) Vvy € Yv.  (15)
Let W = (wy,...,wh)and V = (vy,...,vN), Ay, = VIAW, j € {0} UJ; fy = VTH,.
given any y € U, find py(y) € R" such that (A% + Z»‘M) pa(y) = fy. (16)
JjeJ

which is a N x N system, needs small-scale computation as N < A/, e.g. (10 ~ 100).
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Reduced basis approximation: construction of reduced spaces

Greedy algorithm [Patera and Rozza, 2007]

Initialize &7 = span{p;(y'")} at some random sample y!), thenfor N = 2,3, ...,

v = argsup ||pa(y) = pv-1()llx - or ¥ = argsup |©4(y) — Ov-i ()| (17)
yeU yeu

and the reduced space Xy can be constructed by the snapshots
Xy = Xy_1 & span{pa(y™)}. (18)

Gram-Schmidt process — orthnormal bases (wj))_, of Ay for better stability of Ay (y).

V.
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Reduced basis approximation: construction of reduced spaces

Greedy algorithm [Patera and Rozza, 2007]

Initialize &7 = span{p;(y'")} at some random sample y!), thenfor N = 2,3, ...,

v = argsup ||pa(y) = pv-1()llx - or ¥ = argsup |©4(y) — Ov-i ()| (17)
yeU yeu

and the reduced space Xy can be constructed by the snapshots
Xy = Xy_1 & span{pa(y™)}. (18)

Gram-Schmidt process — orthnormal bases (wj))_, of Ay for better stability of Ay (y).

V.

@ In case of symmetric coercive A, we can directly take Yy = Xy;
@ otherwise, we solve a ‘supremizer’ problem (to guarantee the inf-sup condition)

given y € U, find vy (y) € Vh such that (vy (), vi)y, = A(Wx, vi;y)  Yvw € Vi, (19)
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Reduced basis approximation: construction of reduced spaces

Greedy algorithm [Patera and Rozza, 2007]

Initialize &7 = span{p;(y'")} at some random sample y!), thenfor N = 2,3, ...,

v = argsup ||pa(y) = pv-1()llx - or ¥ = argsup |©4(y) — Ov-i ()| (17)
yeU yeu

and the reduced space Xy can be constructed by the snapshots
Xy = Xy_1 & span{pa(y™)}. (18)

Gram-Schmidt process — orthnormal bases (wj))_, of Ay for better stability of Ay (y).

V.

@ In case of symmetric coercive A, we can directly take Yy = Xy;
@ otherwise, we solve a ‘supremizer’ problem (to guarantee the inf-sup condition)

given y € U, find vy (y) € Vh such that (vy (), vi)y, = A(Wx, vi;y)  Yvw € Vi, (19)
Let A% = (AJW) M, 'AL'W, and F, = (A, W) M; 'f,; we solve the N x N system

(A(XJO F2) AT Y Y A ) pv(y) =+ > vk (20)

jel Jj€l '€l jel
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Reduced basis approximation: a posteriori error estimators |

We consider the error estimator for the nonlinear, nonaffine Qol. Recall by definition

Ou(y) = (6~ Opa(»)) T (5 - O<ph<y)>>) ,

1 1
= exp—-=
oo < 2
which can be expanded as
00,

On(y) = On(y) + o b (Pr(y) = v () + O(llpa(y) — Py )I[%)- (21)
We can estimate the error by
00, 00, (1)
On()—On0)| ~ |5~ /()= <5~ - = AP ).
O)-exl ~ x| | < || FE] ] 0) = el = AP0)
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Ou(y) = (6~ Opa(»)) T (5 - O<ph<y)>>) ,

1 1
= exp—-=
oo < 2
which can be expanded as
00,

On(y) = On(y) + o b (Pr(y) = v () + O(llpa(y) — Py )I[%)- (21)
We can estimate the error by
00, 00, (1)
On()—On0)| ~ |5~ /()= <5~ - = AP ).
O)-exl ~ x| | < || FE] ] 0) = el = AP0)

Here, the reduced solution error can be bounded by

_ LACRI NN
[lpn(y) — pv(W)llx < 50) s AR,

where the residual R,.(-;y) € )’, defined as
Ri(vi;y) = F(vi) — A(pn(3), visy) Vv € D,

and the inf-sup constant 8 (y) is uniformly bounded from below by 3-%.
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Reduced basis approximation: a posteriori error estimators |l

We consider a dual problem corresponding to the primal problem (12) reads as

_ o8,
o

We may approximate this high-fidelity solution with a reduced dual solution by solving

aeh u u
or pN(v)(wzdu) Vi, € A, (22)

given any y € U, find ¢, (y) € Y such that A(wy, ¥n; y)

(wh) Ywy, € X.

()

find ¥w,, (y) € Vv, Such thatA(w}'\’;';“, VN3 Y) =
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We consider a dual problem corresponding to the primal problem (12) reads as

_ o8,
o

We may approximate this high-fidelity solution with a reduced dual solution by solving

aeh u u
or pN(v)(wzdu) Vi, € A, (22)

given any y € U, find ¢, (y) € Y such that A(wy, ¥n; y)

(wh) Ywy, € X.

()

find ¥w,, (y) € Vv, Such thatA(w}'\’;';“, VN3 Y) =
The second error estimator (dual-weighted residual) is simply defined as

M= D ulen() WA Waap,

AP 5) = R, ();) = £ Warth, »
je{oyul

du

) (29
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Reduced basis approximation: a posteriori error estimators |l

We consider a dual problem corresponding to the primal problem (12) reads as

_ o8,
o

We may approximate this high-fidelity solution with a reduced dual solution by solving

90,
aph

given any y € U, find ¢, (y) € Y such that A(wy, ¥n; y)

(wh) Ywy € A

()

find vy, () € Y, such that A(wi!, , ¥n,;y) = N Y € A, (22)

w
N ()

The second error estimator (dual-weighted residual) is simply defined as

AP ) = R(n,, ():9) = B Wathy, ) — > »(ov()) W' A Wapy, (v)  (23)
je{oyul

A closer look at the residual (by Galerkin orthogonality):

_ o0,
o

which is nothing but the first term in the expansion. Moreover,
R(n(3);y) — AP () = R(el (v);9) = Aler(y), e (0);¥) < m)llen)l|x]leil' )], (25)

where we denote the reduced errors e, (y) = pr(y) — px () and e (y) = ¥ (y) — ¥n,, ().

(Pn(y) = pv(¥)), (24)

h
N ()

R(n(y);y) = Apn(y) — pv(¥); n(y); ¥)
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Reduced basis approximation: a posteriori error estimators |l

We may propose the use of a (improved/corrected) reduced output

05 (y) = O () + A7 (7). (26)
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Reduced basis approximation: a posteriori error estimators |l

We may propose the use of a (improved/corrected) reduced output
ON () = On () + AP (). (26)
The last term in the expansion can be further expanded as

_19%6,
2 9p; o

o(llps () —pv %) (2 (y) = v (), Pn(y) — Py () + O(llpn(y) — v (9) )
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Reduced basis approximation: a posteriori error estimators |l

We may propose the use of a (improved/corrected) reduced output
ON () = On () + AP (). (26)
The last term in the expansion can be further expanded as

10°6,
2 op;

(P () = v () i (v) = Py () +O(1Pa(3) = v )] %)-

N ()

O(llps(») —pn ()| |%) =

So that the third a posteriori error estimator can be given by
AP () = max {80 0), 600} (27)
where (note |0,(y) — O%(y)| = ( firstterm — A,S,z)) + second term )

AP 0) =m0 len )l x e 0Ly, and A (5) == % ()lles )z (28)

Note that A,(f) and A](VS) exhibit a quadratic dependence on the reduced solution error.
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Reduced basis approximation: a posteriori error estimators |l

We may propose the use of a (improved/corrected) reduced output
ON () = On () + AP (). (26)
The last term in the expansion can be further expanded as

_ 196,
2 0p;

(2 (y) = v (), Pn(y) — Py () + O(llpn(y) — v (9) )

N ()

O(llpn(y) —px O)|I3)
So that the third a posteriori error estimator can be given by
a00) =max {20), 0 0}, (27)
where (note |©,(y) — O (y)| =~ (firstterm — A,S,z)) + second term )

AP ) = wm)lenO)l|x]lei O)]ly, and AP () == ) lea()][%- (28)

Note that A,(f) and AIE,S) exhibit a quadratic dependence on the reduced solution error.

The second (dual-weighted residual) error estimator is the cheapest to evaluate. ‘

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis 19/29



Reduced basis approximation: an adaptive greedy algorithm

‘ Adaptively construct the reduced bases using sparse grid nodes as training samples.
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Reduced basis approximation: an adaptive greedy algorithm

‘ Adaptively construct the reduced bases using sparse grid nodes as training samples. ‘

Adaptive greedy algorithm [Chen and Quarteroni, 2014]

Initialization: specify tolerance ¢;, set N = 1, solve the high-fidelity problem at y}, the
root node in the sparse grid, and construct the first reduced space &, = span{p;(y1)};
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Adaptive greedy algorithm [Chen and Quarteroni, 2014]

Initialization: specify tolerance ¢;, set N = 1, solve the high-fidelity problem at y}, the
root node in the sparse grid, and construct the first reduced space &, = span{p;(y1)};
While sparse grid construction continues

at each new index i, update the training set Sy = Zix;

end
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Reduced basis approximation: an adaptive greedy algorithm

‘ Adaptively construct the reduced bases using sparse grid nodes as training samples. ‘

Adaptive greedy algorithm [Chen and Quarteroni, 2014]

Initialization: specify tolerance ¢;, set N = 1, solve the high-fidelity problem at y}, the
root node in the sparse grid, and construct the first reduced space X; = span{p,(y1)};
While sparse grid construction continues

at each new index i, update the training set Sy = Zix;

While maxycz,,,, Anv(y) > &

set yV*+1) = argmax .= . An(y);
solve high-fidelity problem at y¥*1 to obtain p, (y™*");
update Xy = Xy @ span{p;(y**)};
setN =N + 1.
end
end
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‘ Adaptively construct the reduced bases using sparse grid nodes as training samples. ‘

Adaptive greedy algorithm [Chen and Quarteroni, 2014]

Initialization: specify tolerance ¢;, set N = 1, solve the high-fidelity problem at y}, the
root node in the sparse grid, and construct the first reduced space X; = span{p,(y1)};
While sparse grid construction continues
at each new index i, update the training set Sy = Zix;
While maxycz,,,, Anv(y) > &
Update E4train as Etrain = Etmin \ {y € Elmin . AN (y) < Et};
set yV+1) = argmax .= . An(y);
solve high-fidelity problem at y¥*1) to obtain p, (y™*");
update Xy = Xy @ span{p;(y**)};
setN =N+ 1.
end
end

Peng Chen (ETH Zurich) SG & RB for Bayesian Inverse Problems August 15, 2014, Disentis



Reduced basis approximation: an adaptive greedy algorithm

‘ Adaptively construct the reduced bases using sparse grid nodes as training samples. ‘

Adaptive greedy algorithm [Chen and Quarteroni, 2014]

Initialization: specify tolerance ¢;, set N = 1, solve the high-fidelity problem at y}, the
root node in the sparse grid, and construct the first reduced space X; = span{p,(y1)};
While sparse grid construction continues
at each new index i, update the training set Sy = Zix;
While maxyez=,,, Av(y) > &
Update E4train as Etrain = Etmin \ {y € Elmin . AN (y) < Et};
set yV+1) = argmax .= . An(y);
solve high-fidelity problem at y¥*1) to obtain p, (y™*");
update Xy = Xy @ span{p;(y**)};
setN =N+ 1.
end
end

Replace high-fidelity solve by reduced basis solve at almost all sparse grid nodes.
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A priori error estimates

Assumption [Schwab and Stuart, 2012]

There exist 0 < amin < amax < 00, such that vz € U := @, {z € C ozl <1}
amin < Ru(x,z)) < |ulx,2)| < dmax, Vx €D (29)

There exists a constant 0 < a < 1, such that (recall u(y) = o + >_;c; viv)

> 1l oy < 00 (30)

JEI
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A priori error estimates

Assumption [Schwab and Stuart, 2012]

There exist 0 < amin < amax < 00, such thatVz € U := ), {z € |z <1}

amin < R(u(x,z)) < |u(x,z)| < dmax, VXED (29)

There exists a constant 0 < a < 1, such that (recall u(y) = o + >_;c; viv)

> 1l oy < 00 (30)

JEJ

| \

Global approximation
The Qol O(y) and Z are approximated by

O() = 0() — 6;(y) +605(y) = O5u(y) + Osu(y) — Os,r (¥) +Os,n,r (),

interpolation error high-fidelity error reduced basis error

and
VA Z— Zs aF Zs - Zs,h aF Zs,h - Zs,h,r +Z:,h,r~
~—— —— (S

quadrature error  high-fidelity error  reduced basis error
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A priori error estimates

Sparse grid approximation error [Schillings and Schwab, 2013]

Oy) —6;y)| <CM and|Z-Z|<CM ", s=——1.
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A priori error estimates

Sparse grid approximation error [Schillings and Schwab, 2013]

0() —0,()| < CM~* and |Z - Z,| < CM~, 5=+ —1.

High-fidelity approximation error

| Q
A\

|®s (y) - C—)s,h(y)‘ S Cht and ‘Z? - Zs,h| S Cht; t= min{tpolyrmmiah Zregularity}-
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A priori error estimates

Sparse grid approximation error [Schillings and Schwab, 2013]

0() —0,()| < CM~* and |Z - Z,| < CM~, 5=+ —1.

| Q
A\

High-fidelity approximation error

|®s (y) - C—)s,h(y)‘ S Cht and ‘Zc - Zs,h| S Cht; t= min{tpolyrmmiah Zregularity}-

RB approximation error [Binev et al., 2011, Cohen and DeVore, 2014]

_ _ 1
|®s,h()/) = O, ()| < CN *and |Zsn — Zs n.r] < CN s = o 1,
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A priori error estimates

Sparse grid approximation error [Schillings and Schwab, 2013]

Oy) —6;y)| <CM and|Z-Z|<CM ", s=——1.

High-fidelity approximation error

|®s (y) - C—)s,h(y)‘ S Chr and ‘Zc - Zs,h| S Chty t = min{tpolynomiah lmgularity}-

RB approximation error [Binev et al., 2011, Cohen and DeVore, 2014]

|®s,h()7) - es,h,r(y)| < CN™’ and |Zs,h - Zs,h,r| <CN°, s=—-—-1

| Q_
N,

Global approximation error

1©() — Ou ()| < CoM ™ + Cih' + CN .

|Z — Zsjr| < CoM™  + CiH + CoN™°.

A,
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Numerical experiments: sparse grid approximation error

We consider a diffusion problem with K = 9 observations. We take J = {1,...,64} and
Yo = land ¢ =0.95 *xp,, j€J,s0 > 1/2and the rate —s = —(1/a — 1) > —1.

construction with interpolation error indicator construction with integration error indicator

LS fitted rate = —1.5658

fitted rate = -1.3629

interpolation error estimator
interpolation error estimator
3

107
. 107
107
10 . 10° .
10° 10' 10° 10° 10° 10' 10° 10°
#indices # indices

Figure: Interpolation error estimator of the dimension-adaptive sparse grid approximation
constructed by the interpolation error indicator (left) and the integration error indicator (right).
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Numerical experiments: sparse grid approximation error

We consider a diffusion problem with K = 9 observations. We take J = {1,...,64} and
Yo = land ¢ =0.95 *xp,, j€J,s0 > 1/2and the rate —s = —(1/a — 1) > —1.

construction with interpolation error indicator construction with integration error indicator

10° LS fitted rate = ~2.0886 10 LS fitted rate = ~2.6558

integration error estimator
3
integration error estimator

10
107
107
-
10 10°
"
10 . . 10 . .
10° 10' 10° 10° 10° 10' 10° 10°
#indices # indices

Figure: Integration error estimator of the dimension-adaptive sparse grid approximation
constructed by the interpolation error indicator (left) and the integration error indicator (right).
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Numerical experiments: high-fidelity approximation error

finite element error
# reduced bases

LS fitted rate = -2.1292

10' 10° 10
1/h 1/h

Figure: Left: decay of finite element error with respect to the mesh size (1/h); right: change of the
number of reduced bases (constructed with tolerance 10~7) with respect to the mesh size (1/h).
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Numerical experiments: effectivity of different error estimators

effectivity = _bv
181 (y) — On(Y)]
10"
=
N (1) S
10° e Ag)i g
A
W 2
k]
[
=
s ) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ke
2
° 1 T T T T T T T T T
16 -
e ]
212 ,
o o x
$ ’ e any 2
00.& 4
102 L L L L L L L L L 04 x
[ 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sample sample

Figure: Left: effectivity of the three error estimators; right: the true reduced output error (truncated
above 10~'%) and the effectivity of the dual-weighted residual with respect to this error.
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Numerical experiments: effectivity of different error estimators

effectivity = 5 5y — 60|

effectivity

2000 3000 4000 5000 6000 7000 8000 9000 10000
sample

10 L L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sample

Figure: Left: effect of correction E, /E; with E; = |©,(y) — ©%,(v)| and E; = |©,(y) — On(y)|; right:
effectivity of A,(v“) and A,(\,S) defined in (28) with respect to the corrected output error.
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Numerical experiments: reduced basis approximation error

Relative output error without dual correction

YEEest O, (y)

itted rate = —1.5841

LS fitted rate = -5.1409

o 1 o 1

10 10
# reduced bases # reduced bases

Figure: Decay of reduced basis approximation error with respect to the number reduced bases;
left: 64 dimensions, fitted rates for the first 32 bases and the other 68 bases; right: 256 D.
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Numerical experiments: reduced basis approximation error

Relative output error with dual correction

1©n(y) — Oy ()]
max —— -
YEErest @;V (y)

10 10"
10
10°
= =
> z % Z 1
= 10t =
I 1
= =
9_: 10° 9: 10
3 LS fitted rate = ~7.129 & 107
£ E
-
10
10
1070 . 10° .
10° ! 10° 10° 10' 10°
# reduced bases # reduced bases

Figure: Decay of reduced basis approximation error with respect to the number reduced bases;
left: 64 dimensions, fitted rates for the first 32 bases and the other 68 bases; right: 256 D.
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Conclusion and perspective

Conclusion

@ Curse-of-dimensionality can be broken by sparsity — adaptive sparse grid.

Perspective

\ | A\

P. Chen and Ch. Schwab, Sparse grid and reduced basis approximation for Bayesian
inverse problems, manuscript, 2014.
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Perspective
@ Work on the improvement of the theoretical estimate for faster convergence.
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@ Goal-oriented error estimator (dual-weighted residual) achieves excellent
effectivity for the nonlinear and nonaffine output in Bayesian inverse problems.

@ The adaptive sparse grid approximation error and particularly the reduced basis
approximation error converges faster in practice than predicted by theory.

Perspective
@ Work on the improvement of the theoretical estimate for faster convergence.

@ Sparse grid reduced basis approximation for nonlinear and nonaffine problems.

P. Chen and Ch. Schwab, Sparse grid and reduced basis approximation for Bayesian
inverse problems, manuscript, 2014.
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Perspective
@ Work on the improvement of the theoretical estimate for faster convergence.

@ Sparse grid reduced basis approximation for nonlinear and nonaffine problems.
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Conclusion and perspective

Conclusion

@ Curse-of-dimensionality can be broken by sparsity — adaptive sparse grid.

@ Large-scale computation can be harnessed by reducibility — reduced basis.

@ Goal-oriented error estimator (dual-weighted residual) achieves excellent
effectivity for the nonlinear and nonaffine output in Bayesian inverse problems.

@ The adaptive sparse grid approximation error and particularly the reduced basis
approximation error converges faster in practice than predicted by theory.

Perspective
@ Work on the improvement of the theoretical estimate for faster convergence.

@ Sparse grid reduced basis approximation for nonlinear and nonaffine problems.
@ RB can be efficiently combined with any other quadrature rule, e.g. QMC.
@ A global framework for adaptive approximation in balancing all the errors.

P. Chen and Ch. Schwab, Sparse grid and reduced basis approximation for Bayesian
inverse problems, manuscript, 2014.
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Thank you for your attention!
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