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Motivation
Approximation of manifold-valued functions

Approximation using B-spline

Goal: Solving PDE’s an optimization problems where we seek a
function with values in a riemannian Manifold.

Example: Liquid Crystals

Consist of rod-shaped-molecules

f : Ω ⊂ R3 → S2 = {x ∈ R3| ‖x‖2 = 1}
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Boundary value problem with sphere-valued function

Given Ω ⊂ R2 and g : δΩ→ S2 we are interested in minimizing
the energy

fopt = argmin
f :Ω→S2

∫
Ω
‖∇f (x)‖2dx

subject to f = g on δΩ. Here ‖∇f (x)‖2 =
∑3

i=1

∑2
j=1

(
dfi (x)
dxj

)2
.
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Other Applications

Rigid Body Motion

Image Processing

Diffusion Tensor Imaging

. . .
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We will consider functions f : RD → M where M is a Riemannian
Manifold.

How to solve optimization problems numerically?

Characterize the solution u as the minimum of some
functional J on a function space V .

Consider a subspace Vh of functions which can be handled by
a computer, i.e. each function is characterized by finitely
many values.

Find the minimum uh of the functional on this subspace.
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Markus Sprecher, ETH Zürich Approximation of Geometric Data



Motivation
Approximation of manifold-valued functions

Approximation using B-spline

We will consider functions f : RD → M where M is a Riemannian
Manifold.
How to solve optimization problems numerically?

Characterize the solution u as the minimum of some
functional J on a function space V .

Consider a subspace Vh of functions which can be handled by
a computer, i.e. each function is characterized by finitely
many values.

Find the minimum uh of the functional on this subspace.
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How far is this solution from the exact solution?

Theorem ((Linear) Céa)

Let a be a coercive bilinear form, L a linear form and u and uh the
solution of

a(u, v) = L(v) ∀v ∈ V (resp.Vh)

then
‖u − uh‖ 6 C argmin

w∈Vh

‖w − u‖ .

Theorem (Grohs, Hardering, Sander 2012)

If J is elliptic along geodesic homotopies.

D(u, uh) 6 C argmin
w∈Vh

D(w , u)

where D is a distance function.
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In order to bound the error between the exact solution and the
approximation by geodesic finite elements we need to bound the
best approximation error of the ”finite element space”.

Markus Sprecher, ETH Zürich Approximation of Geometric Data
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How to interpolate manifold-valued functions?

Let us first consider M = Rm.
Consider a set of functions (ψi )i∈I associated to points
(xi )i∈I ⊂ Rn.
Define approximation operator by

Qhf (x) =
∑
i∈I

ψi (xh−1)f (hxi ).

If Qh is exact for constant functions we have∑
i∈I

ψi (x) = 1.

hence for all x ∈ Rn, Qhf (x) is an weighted average of function
values at the grid points.
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For points x1, . . . , xn ∈ M and weights λ1, . . . , λn ∈ R with sum 1
we define the Riemannian average by

avM((xi )
n
i=1, (λi )

n
i=1) = argmin

x∗∈M

n∑
i=1

λid
2(x∗, xi ).

The first order condition for the average x∗ is

n∑
i=1

λi log(x∗, xi ) = 0.

If M = Rm the Riemannian average reduces to the affine
combination. Hence avM is a generalization of affine combinations
to the manifold-valued setting.
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Markus Sprecher, ETH Zürich Approximation of Geometric Data



Motivation
Approximation of manifold-valued functions

Approximation using B-spline

For points x1, . . . , xn ∈ M and weights λ1, . . . , λn ∈ R with sum 1
we define the Riemannian average by

avM((xi )
n
i=1, (λi )

n
i=1) = argmin

x∗∈M

n∑
i=1

λid
2(x∗, xi ).

The first order condition for the average x∗ is

n∑
i=1

λi log(x∗, xi ) = 0.

If M = Rm the Riemannian average reduces to the affine
combination. Hence avM is a generalization of affine combinations
to the manifold-valued setting.
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Theorem (Karcher)

The Riemannian average is locally well defined.

Hence we can define an approximation operator by

Qhf (x) = avM(f (hxi )i∈I , (ψi (h−1x))i∈I ).

The ”finite element space” is

{x 7→ avM((ci )i∈I , (ψi (h−1x))i∈I )|ci ∈ M s.t. av well defined}.

Each function can be represented by the values (ci )i∈I .
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Markus Sprecher, ETH Zürich Approximation of Geometric Data



Motivation
Approximation of manifold-valued functions

Approximation using B-spline

Theorem (Karcher)

The Riemannian average is locally well defined.

Hence we can define an approximation operator by

Qhf (x) = avM(f (hxi )i∈I , (ψi (h−1x))i∈I ).

The ”finite element space” is

{x 7→ avM((ci )i∈I , (ψi (h−1x))i∈I )|ci ∈ M s.t. av well defined}.

Each function can be represented by the values (ci )i∈I .
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How can we bound the approximation error Qhf (x)− f (x) and its
derivatives?

Theorem (Jackson)

If M = Rm, f ∈ C k and Qh is exact for polynomials of degree
smaller than k thenwwwD l(Qhf (x)− f (x))

www 6 Chk−l .

Does the same result hold for manifold-valued functions?

Theorem (Grohs, Hardering, Sander)

For Lagrange-Interpolation (i.e. ψi (xj) = δij) the above statement
is true for l = 1 and the L∞ as well as the L2-norm.
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Lagrange Interpolation is numerically not stable.

A more stable choice are cardinal B-splines.
For odd m ∈ N there exists Bm : R→ R such that

Bm ∈ Cm−1

supp(Bm) = [−(m − 1)/2, (m − 1)/2]

Bm|k+1
k ∈ Πm for all k ∈ N

−2 0 2
0

0.2

0.4

0.6
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{x 7→ avM((ci )i∈I , (Bm(h−1x − i))i∈I )|ci ∈ M}.

How well does this space approximate a given function f ?
How to choose ci given f ?
Spline functions are only exact for polynomials of degree 1.
But we can consider linear combinations of the shifted spline
function which are exact for polynomials up to degree n.

φm(x) =

(m−1)/2∑
j=−(m−1)/2

ajBm(x − j).

E.g. if m = 3 then (a−1, a0, a1) = (−1/6, 4/3,−1/6) if m = 5
then (a−2, . . . , a2) = (13/240,−7/15, 73/40,−7/15, 13/240)
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If M = Rn :

Qhf (x) =
∑
i

φm(h−1x − i)f (hi) (1)

=
∑
i ,j

ajBm(h−1x − i − j)f (hi) (2)

=
∑
k

∑
j

aj f (h(k − j))

Bm(h−1x − k) (3)

Hence we can choose ck =
∑

j aj f (h(k − j)) which will give a high
order approximation.
A natural generalization to the nonlinear case is

ck = avM ((aj), (f (h(k − j))))

Markus Sprecher, ETH Zürich Approximation of Geometric Data



Motivation
Approximation of manifold-valued functions

Approximation using B-spline

If M = Rn :

Qhf (x) =
∑
i

φm(h−1x − i)f (hi) (1)

=
∑
i ,j

ajBm(h−1x − i − j)f (hi) (2)

=
∑
k

∑
j

aj f (h(k − j))

Bm(h−1x − k) (3)

Hence we can choose ck =
∑

j aj f (h(k − j)) which will give a high
order approximation.

A natural generalization to the nonlinear case is

ck = avM ((aj), (f (h(k − j))))
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Markus Sprecher, ETH Zürich Approximation of Geometric Data



Motivation
Approximation of manifold-valued functions

Approximation using B-spline

Numerical experiment

R→ S2 : x 7→

cos(cos(x) + 1) cos(cos(x))
cos(cos(x) + 1) sin(cos(x))

sin(cos(x) + 1)

.

10−4 10−3 10−2
10−13

10−10

10−7 m=3
m=5
m=7
m=9

Only order 4 approximation!
For other approximations using subdivisions a similar behavior has
been observed. [G. Xie and T. Yu]
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Alternative to Riemannian Average:

By Nash’s embedding Theorem M ⊂ RK for some K ∈ N. Let PM

be the closest-point projection onto M. Consider

Qhf (x) = PM

(∑
k

φm(h−1x − k)f (hk)

)
.

This approximation operator has the same approximation order as
the corresponding linear operator (without the projection).
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What about approximation with splines?

Qhf (x) = PM

(∑
k

Bm(h−1x − k)ck

)
.

Here a natural choice for the ck would be

ck = PM

∑
j

aj f (h(k − j))


This will again only give an order 4 approximation.
Are there any higher order approximations?

Markus Sprecher, ETH Zürich Approximation of Geometric Data



Motivation
Approximation of manifold-valued functions

Approximation using B-spline

What about approximation with splines?

Qhf (x) = PM

(∑
k

Bm(h−1x − k)ck

)
.

Here a natural choice for the ck would be

ck = PM

∑
j

aj f (h(k − j))



This will again only give an order 4 approximation.
Are there any higher order approximations?
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Consider f : R→ S1

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

In general
∑

j aj f (h(k − j) /∈ M hence PM needed.
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Orthonormal Perturbations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Consider f (x) = gh(x)f (x) with gh : R→ R+ such that∑
j

aj f (h(k − j) ∈ M.
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Consider a 1-periodic function f : R→ Sm.
Let n = 1/h and z1, . . . , zn ∈ R such that

ck :=
∑
j

aj(zk−j f (h(k − j))) ∈ Sm (4)

Theorem

For h small enough there is exactly one solution z1, . . . , zn.

We can define a 1-periodic function gh : R→ R+ and

f h(x) = f (x)gh(x) (5)

such that ∑
j

aj f (x + h(k − j)) ∈ Sm (6)
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Theorem

The function gh has the same smoothness as f and its derivatives
are uniformly bounded independent of h.
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Theorem

Choosing ck =
∑

j aj f (h(k − j)) ∈ Sm and define

Qhf (x) = PM

(∑
k Bm(h−1x − k)ck

)
will yield an order

m + 1-approximation.

Proof: wwwwwf (x)− PM

(∑
k

Bm(h−1x − k)ck

)wwwww (7)

6

wwwwwPM(f (x))− PM

(∑
i

φm(h−1x − i)f (hi)

)wwwww (8)

6 C1

wwwwwf (x)−

(∑
i

φm(h−1x − i)f (hi)

)wwwww (9)

6 C2hα (10)
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How to compute ck?

Let f1, . . . , fd be the values of f at the points h, 2h, . . . and let
g1, . . . , gd be our unknowns such that gh(hi) = gi . As before let
ci =

∑
k ak fi−kgi−k . We find the solution by solving the system of

equations
〈ci , ci 〉 − 1 = 0 ∀i ∈ {1, . . . , n}

using Newton’s Method.
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Numerical Test: R→ S2 : x 7→

cos(4 cos(x)) cos(5 cos(x))
cos(4 cos(x)) sin(5 cos(x))

sin(4 cos(x))

.

10−3 10−2 10−1
10−16

10−12

10−8

10−4 m=3
m=5
m=7
m=9
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Some Remarks

Generalization to Manifolds which are given as
M = {x ∈ RK : g(x) = 0} where g : RK → RL and Dg is of
maximal rank is possible.

Existence of quasiinterpolation operator already sufficient for
analysis of numerical solution of PDEs

Markus Sprecher, ETH Zürich Approximation of Geometric Data
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Thank You for your attention!
Any Questions?

Markus Sprecher, ETH Zürich Approximation of Geometric Data
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