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Outline

@ Introduction: Linear approximation theory



Motivation

e Curse of dimension:

High-dimensional problems, e.g. eigenvalue problems for functions of many
variables, become intractable when using standard discretization techniques
due to the exponential scaling of the discretized systems.

e Example: Electronic Schrodinger equation HY = EY,
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operates on functions ¥ € H' (R3V).

e Approaches:

e Sparse grids:  Based on regularity

e Low-rank tensor techniques: Does regularity also help?



Regularity and linear approximation

Isotropic Sobolev class:
Let L, (m,) be the 27 periodic L, functions. Consider the following subclass:
. 2
={elam): Iflls <1} W5 = max I3
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Regularity and linear approximation

e Approximation by trigonometric polynomials:

Obviously, the best approximation of f € L,(m,;) in the norm || - ||o by a
trigonometric polynomial of degree at most 7 is

fo=Y, Fe)e™.

k|1 <n

e Approximation error:
If f € B%, then

IF=rlf= ¥ FRP<n ¥ KPF0PSn > IfFsn .

k| >n (k|1 >n



Regularity and linear approximation

dof complexity:

The number of trigonometric polynomials of degree at most 1 grows like ~ n¢.

Thus, to approximate f € B® to an accuracy €, we need an
N(e)<e ™ (e—0)

dimensional linear subspace in general.



Regularity and linear approximation

¢ Kolmogorov N-width:
It is well known (Kolmogorov, 1936) that
dy(B’,Ly(mg)) = inf  sup inf |[f—gllo~ N (N — o).

VNCLz(n'd)ngv geVy
dimVy=N

— Approximation by trigonomeric polynomials is asymptotically optimal.

e Curse of dimension:

To keep N(g) ~ £4/5 tolerable for € — 0, the regularity needs to grow with
dimension:
s~d.



Mixed regularity and linear approximation

A partial way out ...

e Mixed Sobolev class:
Consider functions from

B = {f € Ly(ma): [Ifllsmix < 1},

-y (Hk”) 7).

keZd p=

— Mixed derivatives up to order ds!



Mixed regularity and linear approximation

e Hyperbolic cross approximation:

F(n):{keZd: ﬁkugn}.

u=1

e Approximation error:

By the same reasoning as before: If f € BS™X, then

If = fromllo Sn.



Hyperbolic cross




Mixed regularity and linear approximation

But this time...

dof complexity:

The space of polynomials with coefficients from the hyperbolic cross has
dimension
[D(n)| ~ " lognl =) (1 o0).

It can be shown that it follows

N(e) <e lloge|™! (e —0).



Mixed regularity and linear approximation

Kolmogorov N-width:
It is known (Babenko, 1960) that

dy (B*™, L (mg)) ~ N™*|1og N1 (N — o).

Approximation by trigonomeric polynomials from the hyperbolic cross is
asymptotically optimal.

Softened curse of dimension:

Leads to tolerable complexity at least up to d = 10 or so ...

Yserentant’s results: Regularity and approximability of electronic wave
functions. Springer-Verlag, Berlin 2010.



Sums of separable functions

e Tensor product structure:

The approximation by trigonometric polynomials yield approximations by a
sum of separable functions:

d
cheik'x = chgeikﬂxﬂ = ;”/11 ® ~~®u,1€d

with fixed choice (dictionary) for the ufﬂ.

¢ Question: Is there a (general) gain in complexity by not restricting the factors

ufﬂ a priori, and if yes, in which function classes?

— An appropriate, non-tautological answer is currently unknown.

e In this talk:

The answer is probably: asymptotically No in the classes B® and B*™*,
It is believed that the classical notion of smoothness is not appropriate.
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Bilinear approximation

¢ Best bilinear approximation error:
Ford>2,1<a<d,y=(x1,...,%), 2= (Xg41,--.,%q) let

®(f,a) = inf

Uy, UREL (Mg)

P(X) - 1;1 ui(y)vi(z)

0

e How large one has to choose the rank R?
Study the quantities

sup tr(f,a), sup Tr(f,a).
feB* feBs,mix



Bilinear approximation

An equivalent formulation:
Let
Ar: Lz(ﬂd,a) — L2(7Ea), Afv /f y7

denote the assosiated Hilbert-Schmidt integral operator. Then the bilinear
approximation problem is equivalent to

f ||Ar—A
ranll?A<rH f- HHS



A link to operator ideals

e “Solution”: Schmidt expansion (SVD):

Let -
Ar = Z o @v,  {ui}, {vic} ONS, o >0,
k=1
then
R
A= Z Oy Q Vi
k=1
satisfies

w®(f,a) = |Ar —Allus = \/ Y ot
k=R+1

— Need singular value estimates of integral operators with kernels from Sobolev
classes

— Close link to the theory of operator ideals.



Temlyakov’s results

e In a series of papers (1986-1993) Temlyakov proved (amongst much more
general results on L,):

sup TR(f,a) -~ R—smax(l/a,l/(d—a)) (R s oo)’
feBs

R—2s(logR)Zs(min(a.d—a)—l) 5 sup TR(f,a) /SR—ZS(logR)Zs(max(a,d—a)—l)
feBS,miX

— Required rank R(¢):

Let R(¢€) denote the smallest r needed for accuracy &, then

~ g min(@d=a)/s (g () for f € B,
( < e 1/(2) |10g£|max(a,d7u)fl (8 N O) forf € BS:mix_



A gain?

e Number of required separable functions: Example d even, a = d/2:

N(e) R(e)
fe B* ~ sle/x ~ gfd/(2s)

fe BSmix | 871/s|10g8|d71 -~ 8—1/25‘10g8|d/271

e BUT:

While N(€) measures computational complexity (number of basis functions
from a fixed basis), R(€) does not yet:

Since the singular vectors u;,v; are not known in advance, we need to make
sure we can approximate and store them efficiently.

Griebel, Harbrecht: Approximation of bi-variate functions: singular value decomposition versus
sparse grids, IMA J. Numer. Anal. 2013.



Approximation of singular vectors

o If we approximate uy, vy by iy, ¥ to an accuracy to accuracy £R(g) /% /oy
and put

. R(¢)
F=Y aiuew,
k=1

then y
IF=fl <e.
(Griebel and Harbrecht, 2013)

e How many degrees of freedom do we have to spend to achieve this
accuracy?



Regularity of singular vectors

e Mapping properties of integral operators:
The left singular vectors satisfy

oxur(y) = (Apvie) (v) = Ok /f ¥, 2)vi(z
—  Nuklls < |flls.i/ox  (similar for vg)
¢ Linear approximation:
Approximate uy to accuracy £R(g)~'/2 /oy, requires (in general)

~ (eR(g)~'/?)=1/s dofs. This we have to do 2R(¢) times

—  dof(e) < e /SR(g)!1/(29),



Comparison

e Required degrees of freedom: Example d =2, a = 1:

N(e) R(e) dof(e)

feB ~ g 2s ~g /s N 8*2/“’8*1/@"2)

f c Bs,mix ~ 871/S| 10g£| ~ 8—1/23 ~ 871/3871/(23)71/(452)
Asymptotically, we lose!

¢ Does not even include the cost to compute the approximations.
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Minimal subspaces

Recursively split variables...

e Integral operators:
Letf € Ly(mg), t = U1,y © 1,2,...,d. Setx' = (xul,...,xu‘t‘) and
={1,...,d}\t. Define the integral operator

Afv /f X', x ) v(x) dx”

e Minimal #-subspace: t-rank:
Uj :=ran(A}) rank, (f) = rank(A}) = dim(U})

Both definitions are due to Hitchcock (1927).



Nestedness

Main observation:
Let t = ;U U...Uty, then
t 1 ) IN
Uy C Uf ®Uf ®---®Uf .
In particular, if t = {1,2,...,d} then
Fevpeure-oUp.

This nestedness is the starting point for the hierarchical Tucker representations.



Hierarchical tensor format

Hackbusch & Kiihn (2009), Grasedyck (2010), Oseledets & Tyrtyshnikov (2009), Quantum
chemistry ...

Dimension tree:

T C 2{1.2.--d} ig called a dimenson tree, if

(i) therootist ={1,2,...,d} €T,

(ii) every node ¢ € T that is not a leaf has at least two nonempty sons t1,ty,...,t,, €T
such that 1 =1 Uty U---Ut,, is a disjoint union,

(iii) the leaves are {u}, u=1,2,...,d.



Hierarchical tensor format

e HT format:

Let T be a dimension tree and r = (r),c7\ {,} @ set of ranks r, € NU {+eo}.
Let r;, = 1 for the root. f € L,(m,) is (T,r)-decomposable if it can be
decomposed in the following form.

(i) Toevery node z € T'\ {#,} an r;-dimensional subspace U’ C Lz(n‘ ,‘) is associated
in form of a basis u/,u5,. .., u}, . For the root let utl" =f.

(ii) For every node ¢ € T having sons t1,1;,...,t,, there exists a transfer tensor
B! € R/ X7 X X" guch that it holds

o Ty Ting
In,
M;c(xt] 7Xr27 s 7X[’l[) = Z Z o Z ﬁ/g.kl NS T ujcl] (Xt] )u;gzz (th) T uknr, (X[nt)'
k=lk=1 k=1

e The set of (T,r)-decomposable functions will be denoted by 7%, 7.



{1,2.3,4,5F 1,

N

{1,2,3} {4,5}
{1} {2,3}=t {4} {5}
{2}=1 {3}=n
(@)

Hierarchical tensor format

ﬁ{1.2.3.4.5) of
m,W.ﬂ
'B{I.ZJ}_)U{I,Z,B} ﬁ{4‘5}—>U(4v5}
r{]}/\r(z.z) "{M/\"(ﬂ
U [ﬂm}ﬁU{N} v ust
f{z/\r{ﬂ

vz ui3

(b)

Figure : (a) A binary dimension tree for {1,2,3,4,5}, (b) parameters of the (T, r)-decomposition.



Tucker format

{1,2,3,4,5)

TN

{2 {3 4 {5

f € H~ 1 can be written as

'l

d
F@exa) =Y Y Brykgag, (1) uf (k).
=1 kg=1



How to obtain approximations from 7%, 7?

e Single SVD projection:
Let f/(x,x") = Yr—1 O g (X)), (x*) be an SVD at node 7. Let P}’r’ be the
orthogonal projection onto span{u/,...,u, } @span{{,...,v. }, thatis,

It
LIty tot t
Pf f_ Z Gkrukt®vkt'
k=1

e HOSVD projection:
From leaves to root ...

Pf=P{ Pi, P}y, with Pf,= [] P
level(r)=I

—  Pifedar



Approximation error

¢ Quasi-optimality of HOSVD:

IF=pPiflio< Y IfF =PI

€7\ {17}
= Y X (@)P<(m-n inf |f gl
teT\{t;} ke>re+1 §€A<r

De Lathauwer et al. (2000), Grasedyck (2010)

o [t follows:

w(f,T)= inf [[f—gll~ Y}, ©,(f )
=T €T\ {t,}



Required degrees of freedom

Play the same game as before...
¢ Required ranks:
Use Temlyakov’s results on bilinear approximation to esimate the required

ranks r;(€) to achieve error € in every term of ¥c 1 (1} T (f, [1])-

e Overall cost of the hierarchical format:

n
dof(g) < Z r(€) Hr,l. (€) (size of transfer tensors f3)
t € T not leaf i=1
S wow
+ Z dof to approximate u;" ", ... ,ur{#}( g) 1N the leaves

u=1

e For the basis functions in the leaves, exploit again their regularity.



Results

¢ Required degrees of freedom:
Let deg(T) denote the maximum degree of a node in T (number of sons + 1).

N(e) ‘ dof(e)
s o e—d/s <g s, ifd>2+1/(2s)
feB € {N e CHONS. else
. < g—deg(T)/(25) N(T) i
5,Mix —1/s d—1 SE [log e[, if deg(T) >3+1/(2s)
feB ~E / ‘10g8| {< 3/ "’[:4‘2:‘\10g£\“ H/G)E-2) else

Asymptotically, we lose!

¢ Does not even include the cost to compute the approximations.

Schneider & U. Preprint 2013



Discussion

Only upper bounds for asymptotic rates...

Sparse transfer tensors?

The estimates are upper bounds and not necessarily sharp: For example fr(,) is
a Tucker approximation with a sparse core tensor (hyperbolic cross).

For binary trees it seems it would not help in the worst case!

Unfair comparison:

The mixed Sobolev spaces are by definition tailored to hyperbolic cross
approximation.

Black-box character / universality of HOSVD:

For specific, irregular functions it might be much better (characteristic
function on square). Given that, it could be worse :-)

Open problem: What are the right function classes for tensor approximation?



Some remarks on the canonical format

e Canonical low-rank approximation:
Isn’t the following more natural to consider?

R
ianf— u1®~~~®udH
];1 k k 0

e Again Temlyakov:

R
sup ianfqu,iQ@m@uZ
k=1

< psd/(d-1)
feBs,mix 0

No curse of dimension in the number of terms!
e Even U. (2011):

IffeB™Xand [f — YR, ul ®- ®@ul|lo = min, then all u} € H*.
—  Approximability!?



The problem of instability

e But...
When d > 3, then for given r > 2 a best approximation,

R
‘V—Zu,l(@m@qu = min,
k=1 0

might not exist!
cf. De Silva & Lim 2008

e 11l conditioning:
It is in line with this fact that

e No stable method to calculate a solution close to the infimum is known.

e No reasonable bound on Sobolev norms for the factors could be given in my
paper, even if existence of a minimum is assumed.
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