Approximation Rates for the Hierarchical Tensor Format in Periodic Sobolev Spaces

André Uschmajew (EPF Lausanne)
joint: Reinhold Schneider (TU Berlin)

Pro*Doc, Disentis, August 15, 2013
cadmos
center for advanced modeling science

Outline

(1) Introduction: Linear approximation theory
(2) Bilinear approximation
(3) Tree based tensor networks

Outline

(1) Introduction: Linear approximation theory
(2) Bilinear approximation
(3) Tree based tensor networks

Motivation

- Curse of dimension:

High-dimensional problems, e.g. eigenvalue problems for functions of many variables, become intractable when using standard discretization techniques due to the exponential scaling of the discretized systems.

- Example: Electronic Schrödinger equation $H \Psi=E \Psi$,

$$
H=\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}-\sum_{i=1}^{N} \sum_{v=1}^{K} \frac{Z_{v}}{\left|x_{i}-a_{v}\right|}+\frac{1}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{N} \frac{1}{\left|x_{i}-x_{j}\right|},
$$

operates on functions $\Psi \in H^{1}\left(\mathbb{R}^{3 N}\right)$.

- Approaches:
- Sparse grids: Based on regularity
- Low-rank tensor techniques: Does regularity also help?

Regularity and linear approximation

Isotropic Sobolev class:
Let $L_{2}\left(\pi_{d}\right)$ be the 2π periodic L_{2} functions. Consider the following subclass:

$$
\begin{aligned}
B^{s} & =\left\{f \in L_{2}\left(\pi_{d}\right):\|f\|_{s} \leq 1\right\}, \quad\|f\|_{s}^{2}=\max _{\mu=1,2, \ldots, d}\|f\|_{s, \mu}^{2}, \\
\|f\|_{s, \mu}^{2} & =\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \bar{k}_{\mu}^{2 s}|\widehat{f}(\mathbf{k})|^{2}, \quad \text { and } \quad \bar{k}_{\mu}= \begin{cases}\left|k_{\mu}\right|, & \text { for } k_{\mu} \neq 0, \\
1 & \text { for } k_{\mu}=0 .\end{cases}
\end{aligned}
$$

Regularity and linear approximation

- Approximation by trigonometric polynomials:

Obviously, the best approximation of $f \in L_{2}\left(\pi_{d}\right)$ in the norm $\|\cdot\|_{0}$ by a trigonometric polynomial of degree at most n is

$$
f_{n}=\sum_{|\mathbf{k}|_{1} \leq n} \widehat{f}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} .
$$

- Approximation error:

If $f \in B^{s}$, then

$$
\left\|f-f_{n}\right\|_{0}^{2}=\sum_{|\mathbf{k}|_{1}>n}|\widehat{f}(\mathbf{k})|^{2} \leq n^{-2 s} \sum_{|\mathbf{k}|_{1}>n}|\mathbf{k}|_{1}^{2 s}|\widehat{f}(\mathbf{k})|^{2} \lesssim n^{-2 s}\|f\|_{s}^{2} \lesssim n^{-2 s} .
$$

Regularity and linear approximation

dof complexity:

The number of trigonometric polynomials of degree at most n grows like $\sim n^{d}$. Thus, to approximate $f \in B^{s}$ to an accuracy ε, we need an

$$
N(\varepsilon) \lesssim \varepsilon^{-d / s} \quad(\varepsilon \rightarrow 0)
$$

dimensional linear subspace in general.

Regularity and linear approximation

- Kolmogorov N-width:

It is well known (Kolmogorov, 1936) that

$$
d_{N}\left(B^{s}, L_{2}\left(\pi_{d}\right)\right)=\inf _{\substack{V_{N} \subset L_{2}\left(\pi_{d}\right) \\ \operatorname{dim} V_{N}=N}} \sup _{f \in B^{s}} \inf _{g \in V_{N}}\|f-g\|_{0} \sim N^{-d / s} \quad(N \rightarrow \infty) .
$$

\rightarrow Approximation by trigonomeric polynomials is asymptotically optimal.

- Curse of dimension:

To keep $N(\varepsilon) \sim \varepsilon^{-d / s}$ tolerable for $\varepsilon \rightarrow 0$, the regularity needs to grow with dimension:

$$
s \sim d
$$

Mixed regularity and linear approximation

A partial way out ...

- Mixed Sobolev class:

Consider functions from

$$
\begin{gathered}
B^{s, \operatorname{mix}}=\left\{f \in L_{2}\left(\pi_{d}\right):\|f\|_{s, \text { mix }} \leq 1\right\} \\
\|f\|_{s, \text { mix }}^{2}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left(\prod_{\mu=1}^{d} \bar{k}_{\mu}\right)^{2 s}|\widehat{f}(\mathbf{k})|^{2}
\end{gathered}
$$

\rightarrow Mixed derivatives up to order $d s$!

Mixed regularity and linear approximation

- Hyperbolic cross approximation:

$$
\begin{gathered}
f_{\Gamma(n)}=\sum_{\mathbf{k} \in \Gamma(n)} \widehat{f}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}}, \\
\Gamma(n)=\left\{\mathbf{k} \in \mathbb{Z}^{d}: \prod_{\mu=1}^{d} \bar{k}_{\mu} \leq n\right\} .
\end{gathered}
$$

- Approximation error:

By the same reasoning as before: If $f \in B^{s, \text { mix }}$, then

$$
\left\|f-f_{\Gamma(n)}\right\|_{0} \lesssim n^{-s} .
$$

Hyperbolic cross

Mixed regularity and linear approximation

But this time...

dof complexity:

The space of polynomials with coefficients from the hyperbolic cross has dimension

$$
|\Gamma(n)| \sim n^{-s}|\log n|^{s(d-1)} \quad(n \rightarrow \infty)
$$

It can be shown that it follows

$$
N(\varepsilon) \lesssim \varepsilon^{-1 / s}|\log \varepsilon|^{d-1} \quad(\varepsilon \rightarrow 0)
$$

Mixed regularity and linear approximation

- Kolmogorov N-width:

It is known (Babenko, 1960) that

$$
d_{N}\left(B^{s, \operatorname{mix}}, L_{2}\left(\pi_{d}\right)\right) \sim N^{-s}|\log N|^{s(d-1)} \quad(N \rightarrow \infty)
$$

\rightarrow Approximation by trigonomeric polynomials from the hyperbolic cross is asymptotically optimal.

- Softened curse of dimension:

Leads to tolerable complexity at least up to $d=10$ or so ...

- Yserentant's results: Regularity and approximability of electronic wave functions. Springer-Verlag, Berlin 2010.

Sums of separable functions

- Tensor product structure:

The approximation by trigonometric polynomials yield approximations by a sum of separable functions:

$$
\sum c_{\mathbf{k}} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}}=\sum c_{\mathbf{k}} \prod_{\mu=1}^{d} \mathrm{e}^{i k_{\mu} x_{\mu}}=\sum_{\mathbf{k}} u_{k_{1}}^{1} \otimes \cdots \otimes u_{k_{d}}^{1}
$$

with fixed choice (dictionary) for the $u_{k_{\mu}}^{\mu}$.

- Question: Is there a (general) gain in complexity by not restricting the factors $u_{k_{\mu}}^{\mu}$ a priori, and if yes, in which function classes?
\rightarrow An appropriate, non-tautological answer is currently unknown.
- In this talk:

The answer is probably: asymptotically No in the classes B^{s} and $B^{s, \text { mix }}$. It is believed that the classical notion of smoothness is not appropriate.

Outline

(1) Introduction: Linear approximation theory

(2) Bilinear approximation
(3) Tree based tensor networks

Bilinear approximation

- Best bilinear approximation error:

For $d \geq 2,1 \leq a<d, \mathbf{y}=\left(x_{1}, \ldots, x_{a}\right), \mathbf{z}=\left(x_{a+1}, \ldots, x_{d}\right)$ let

$$
\tau_{R}(f, a)=\inf _{\substack{u_{1}, \ldots, u_{R} \in L_{2}\left(\pi_{a}\right) \\ v_{1}, \ldots, v_{R} \in L_{2}\left(\pi_{d-a}\right)}}\left\|f(\mathbf{x})-\sum_{k=1}^{R} u_{k}(\mathbf{y}) v_{k}(\mathbf{z})\right\|_{0}
$$

- How large one has to choose the rank R ?

Study the quantities

$$
\sup _{f \in B^{s}} \tau_{R}(f, a), \quad \sup _{f \in B^{s, \text { mix }}} \tau_{R}(f, a)
$$

Bilinear approximation

An equivalent formulation:
Let

$$
A_{f}: L_{2}\left(\pi_{d-a}\right) \rightarrow L_{2}\left(\pi_{a}\right), \quad\left(A_{f} v\right)(\mathbf{y})=\int f(\mathbf{y}, \mathbf{z}) \overline{v(\mathbf{z})} \mathrm{d} \mathbf{z}
$$

denote the assosiated Hilbert-Schmidt integral operator. Then the bilinear approximation problem is equivalent to

$$
\inf _{\operatorname{rank} A \leq r}\left\|A_{f}-A\right\|_{H S} .
$$

A link to operator ideals

- "Solution": Schmidt expansion (SVD):

Let

$$
A_{f}=\sum_{k=1}^{\infty} \sigma_{k} u_{k} \otimes v_{k}, \quad\left\{u_{k}\right\},\left\{v_{k}\right\} \text { ONS }, \sigma_{k} \geq 0
$$

then

$$
A=\sum_{k=1}^{R} \sigma_{k} u_{k} \otimes v_{k}
$$

satisfies

$$
\tau_{R}(f, a)=\left\|A_{f}-A\right\|_{H S}=\sqrt{\sum_{k=R+1}^{\infty} \sigma_{k}^{2}}
$$

\rightarrow Need singular value estimates of integral operators with kernels from Sobolev classes
\rightarrow Close link to the theory of operator ideals.

Temlyakov's results

- In a series of papers (1986-1993) Temlyakov proved (amongst much more general results on L_{p}):

$$
\begin{gathered}
\sup _{f \in B^{s}} \tau_{R}(f, a) \\
\sim R^{-s \max (1 / a, 1 /(d-a))} \quad(R \rightarrow \infty), \\
R^{-2 s}(\log R)^{2 s(\min (a, d-a)-1)}
\end{gathered} \sup _{f \in B^{s, \text { mix }}} \tau_{R}(f, a) \lesssim R^{-2 s}(\log R)^{2 s(\max (a, d-a)-1)} .
$$

\rightarrow Required rank $R(\varepsilon)$:
Let $R(\varepsilon)$ denote the smallest r needed for accuracy ε, then

$$
R(\varepsilon)\left\{\begin{array}{lll}
\sim \varepsilon^{-\min (a, d-a) / s} & (\varepsilon \rightarrow 0) & \text { for } f \in B^{s}, \\
\lesssim \varepsilon^{-1 /(2 s)}|\log \varepsilon|^{\max (a, d-a)-1} & (\varepsilon \rightarrow 0) & \text { for } f \in B^{s, \text { mix }}
\end{array}\right.
$$

- Number of required separable functions: Example d even, $a=d / 2$:

	$N(\varepsilon)$	$R(\varepsilon)$
$f \in B^{s}$	$\sim \varepsilon^{-d / s}$	$\sim \varepsilon^{-d /(2 s)}$
$f \in B^{s, \text { mix }}$	$\sim \varepsilon^{-1 / s}\|\log \varepsilon\|^{d-1}$	$\sim \varepsilon^{-1 / 2 s}\|\log \varepsilon\|^{d / 2-1}$

- BUT:

While $N(\varepsilon)$ measures computational complexity (number of basis functions from a fixed basis), $R(\varepsilon)$ does not yet:

Since the singular vectors u_{k}, v_{k} are not known in advance, we need to make sure we can approximate and store them efficiently.

Griebel, Harbrecht: Approximation of bi-variate functions: singular value decomposition versus sparse grids, IMA J. Numer. Anal. 2013.

Approximation of singular vectors

- If we approximate u_{k}, v_{k} by $\tilde{u}_{k}, \tilde{v}_{k}$ to an accuracy to accuracy $\varepsilon R(\varepsilon)^{-1 / 2} / \sigma_{k}$ and put

$$
\tilde{f}=\sum_{k=1}^{R(\varepsilon)} \sigma_{k} \tilde{u}_{k} \otimes \tilde{v}_{k},
$$

then

$$
\|f-\tilde{f}\| \lesssim \varepsilon
$$

(Griebel and Harbrecht, 2013)

- How many degrees of freedom do we have to spend to achieve this accuracy?

Regularity of singular vectors

- Mapping properties of integral operators:

The left singular vectors satisfy

$$
\sigma_{k} u_{k}(y)=\left(A_{f} v_{k}\right)(y)=\sigma_{k} \int f(y, z) v_{k}(z) \mathrm{d} z
$$

$\rightarrow \quad\left\|u_{k}\right\|_{s} \leq\|f\|_{s, 1} / \sigma_{k} \quad\left(\right.$ similar for $\left.v_{k}\right)$

- Linear approximation:

Approximate u_{k} to accuracy $\varepsilon R(\varepsilon)^{-1 / 2} / \sigma_{k}$ requires (in general) $\sim\left(\varepsilon R(\varepsilon)^{-1 / 2}\right)^{-1 / s}$ dofs. This we have to do $2 R(\varepsilon)$ times

$$
\rightarrow \quad \operatorname{dof}(\varepsilon) \lesssim \varepsilon^{-1 / s} R(\varepsilon)^{1+1 /(2 s)} .
$$

Comparison

- Required degrees of freedom: Example $d=2, a=1$:

	$N(\varepsilon)$	$R(\varepsilon)$	$\operatorname{dof}(\varepsilon)$
$f \in B^{s}$	$\sim \varepsilon^{-2 / s}$	$\sim \varepsilon^{-1 / s}$	$\sim \varepsilon^{-2 / s} \varepsilon^{-1 /\left(2 s^{2}\right)}$
$f \in B^{s, \text { mix }}$	$\sim \varepsilon^{-1 / s}\|\log \varepsilon\|$	$\sim \varepsilon^{-1 / 2 s}$	$\sim \varepsilon^{-1 / s} \varepsilon^{-1 /(2 s)-1 /\left(4 s^{2}\right)}$

Asymptotically, we lose!

- Does not even include the cost to compute the approximations.

Outline

(1) Introduction: Linear approximation theory

(2) Bilinear approximation

(3) Tree based tensor networks

Minimal subspaces

Recursively split variables...

- Integral operators:

Let $f \in L_{2}\left(\pi_{d}\right), t=\mu_{1}, \ldots, \mu_{|t|} \subsetneq 1,2, \ldots, d$. Set $\mathbf{x}^{t}=\left(x_{\mu_{1}}, \ldots, x_{\mu_{|t|}}\right)$ and $t^{c}=\{1, \ldots, d\} \backslash t$. Define the integral operator

$$
\left(A_{f}^{t} v\right)\left(\mathbf{x}^{t}\right)=\int f\left(\mathbf{x}^{t}, \mathbf{x}^{t^{c}}\right) \overline{v\left(\mathbf{x}^{t}\right)} \mathrm{d} \mathbf{x}^{t^{c}}
$$

- Minimal t-subspace:
$U_{f}^{t}:=\operatorname{ran}\left(A_{f}^{t}\right)$
t-rank:

$$
\operatorname{rank}_{t}(f)=\operatorname{rank}\left(A_{f}^{t}\right)=\operatorname{dim}\left(U_{f}^{t}\right)
$$

Both definitions are due to Hitchcock (1927).

Nestedness

Main observation:

Let $t=t_{1} \dot{\cup} t_{2} \cup \dot{\cup} \ldots \dot{U} t_{N}$, then

$$
U_{f}^{t} \subseteq U_{f}^{t_{1}} \otimes U_{f}^{t_{2}} \otimes \cdots \otimes U_{f}^{t_{N}}
$$

In particular, if $t=\{1,2, \ldots, d\}$ then

$$
f \in U_{f}^{t_{1}} \otimes U_{f}^{t_{2}} \otimes \cdots \otimes U_{f}^{t_{N}} .
$$

This nestedness is the starting point for the hierarchical Tucker representations.

Hierarchical tensor format

Hackbusch \& Kühn (2009), Grasedyck (2010), Oseledets \& Tyrtyshnikov (2009), Quantum chemistry ...

Dimension tree:

$T \subseteq 2^{\{1,2, \ldots, d\}}$ is called a dimenson tree, if
(i) the root is $t_{r}=\{1,2, \ldots, d\} \in T$,
(ii) every node $t \in T$ that is not a leaf has at least two nonempty sons $t_{1}, t_{2}, \ldots, t_{n_{t}} \in T$ such that $t=t_{1} \cup t_{2} \cup \cdots \cup t_{n_{t}}$ is a disjoint union,
(iii) the leaves are $\{\mu\}, \mu=1,2, \ldots, d$.

Hierarchical tensor format

- HT format:

Let T be a dimension tree and $\mathbf{r}=\left(r_{t}\right)_{t \in T \backslash\left\{t_{r}\right\}}$ a set of ranks $r_{t} \in \mathbb{N} \cup\{+\infty\}$. Let $r_{t_{r}}=1$ for the root. $f \in L_{2}\left(\pi_{d}\right)$ is (T, \mathbf{r})-decomposable if it can be decomposed in the following form.
(i) To every node $t \in T \backslash\left\{t_{r}\right\}$ an r_{t}-dimensional subspace $U^{t} \subset L_{2}\left(\pi_{|t|}\right)$ is associated in form of a basis $u_{1}^{t}, u_{2}^{t}, \ldots, u_{r_{t}}^{t}$. For the root let $u_{1}^{t_{r}}=f$.
(ii) For every node $t \in T$ having sons $t_{1}, t_{2}, \ldots, t_{n_{t}}$ there exists a transfer tensor $\beta^{t} \in \mathbb{R}^{r_{t} \times r_{t_{1}} \times r_{t_{2}} \times \cdots \times r_{n_{t}}}$ such that it holds

$$
u_{k}^{t}\left(\mathbf{x}^{t_{1}}, \mathbf{x}^{t_{2}}, \ldots, \mathbf{x}^{t_{n_{t}}}\right)=\sum_{k_{1}=1}^{r_{t_{1}}} \sum_{k_{2}=1}^{r_{t_{2}}} \cdots \sum_{k_{n_{t}}=1}^{r_{t_{n_{t}}}} \beta_{k, k_{1}, k_{2}, \ldots, k_{n_{t}}}^{u_{k_{1}}^{t_{1}}\left(\mathbf{x}^{t_{1}}\right) u_{k_{2}}^{t_{2}}\left(\mathbf{x}^{t_{2}}\right) \cdots u_{k_{n_{t}}}^{t_{n_{t}}}\left(\mathbf{x}^{t_{n_{t}}}\right)}
$$

- The set of (T, \mathbf{r})-decomposable functions will be denoted by $\mathscr{H}_{\leq \mathbf{r}, T}$.

Hierarchical tensor format

Figure : (a) A binary dimension tree for $\{1,2,3,4,5\}$, (b) parameters of the (T, \mathbf{r})-decomposition.

Tucker format

$f \in \mathscr{H}_{\leq \mathbf{r}, T}$ can be written as

$$
f\left(x_{1}, \ldots, x_{d}\right)=\sum_{k_{1}=1}^{r_{1}} \cdots \sum_{k_{d}=1}^{r_{d}} \beta_{k_{1}, \ldots, k_{d}} u_{k_{1}}^{1}\left(x_{1}\right) \cdots u_{k_{d}}^{d}\left(x_{d}\right)
$$

How to obtain approximations from $\mathscr{H}_{\leq \mathbf{r}, T}$?

- Single SVD projection:

Let $f^{t}\left(\mathbf{x}^{t}, \mathbf{x}^{t^{c}}\right)=\sum_{k_{t}=1}^{\infty} \sigma_{k_{t}}^{t} u_{k_{t}}^{t}\left(\mathbf{x}^{t}\right) v_{k_{t}}^{t}\left(\mathbf{x}^{t^{c}}\right)$ be an SVD at node t. Let $P_{f}^{t, r_{t}}$ be the orthogonal projection onto $\operatorname{span}\left\{u_{1}^{t}, \ldots, u_{r_{t}}^{t}\right\} \otimes \operatorname{span}\left\{v_{1}^{t}, \ldots, v_{r_{t}}^{t}\right\}$, that is,

$$
P_{f}^{t, r_{t}} f=\sum_{k_{t}=1}^{r_{t}} \sigma_{k_{t}}^{t} u_{k_{t}}^{t} \otimes v_{k_{t}}^{t} .
$$

- HOSVD projection:

From leaves to root ...

$$
P_{f}^{\mathbf{r}}=P_{f, L}^{\mathbf{r}} P_{f, L-1}^{\mathbf{r}} \cdots P_{f, 1}^{\mathbf{r}}, \quad \text { with } \quad P_{f, l}^{\mathbf{r}}=\prod_{\text {level }(t)=l} P_{f}^{t, r_{t}} .
$$

$\rightarrow \quad P_{f}^{\mathbf{r}} f \in \mathscr{H}_{\leq \mathbf{r}, T}$

Approximation error

- Quasi-optimality of HOSVD:

$$
\begin{aligned}
\left\|f-P_{f}^{\mathbf{r}} f\right\|_{0}^{2} & \leq \sum_{t \in T \backslash\left\{t_{r}\right\}}\left\|f-P_{f}^{t, r_{t}} f\right\|_{0}^{2} \\
& =\sum_{t \in T \backslash\left\{t_{r}\right\}} \sum_{k_{t} \geq r_{t}+1}\left(\sigma_{k_{t}}^{t}\right)^{2} \leq(|T|-1) \inf _{g \in \mathscr{H} \leq \mathbf{r}, T}\|f-g\|_{0}^{2}
\end{aligned}
$$

De Lathauwer et al. (2000), Grasedyck (2010)

- It follows:

$$
\tau_{\mathbf{r}}(f, T)=\inf _{\mathscr{\mathscr { C } _ { \leq \mathbf { r } , T }}}\|f-g\| \sim \sum_{t \in T \backslash\left\{t_{r}\right\}} \tau_{r_{t}}(f,|t|)
$$

Required degrees of freedom

Play the same game as before...

- Required ranks:

Use Temlyakov's results on bilinear approximation to esimate the required ranks $r_{t}(\varepsilon)$ to achieve error ε in every term of $\sum_{t \in T \backslash\left\{t_{r}\right\}} \tau_{r_{t}}(f,|t|)$.

- Overall cost of the hierarchical format:

$$
\begin{aligned}
\operatorname{dof}(\varepsilon) & \left.\leq \sum_{t \in T \text { not leaf }} r_{t}(\varepsilon) \prod_{i=1}^{n_{t}} r_{t_{i}}(\varepsilon) \quad \quad \text { (size of transfer tensors } \beta^{t}\right) \\
& +\sum_{\mu=1}^{d} \text { dof to approximate } u_{1}^{\{\mu\}}, \ldots, u_{r_{\{\mu\}}(\varepsilon)}^{\{\mu\}} \text { in the leaves }
\end{aligned}
$$

- For the basis functions in the leaves, exploit again their regularity.

Results

- Required degrees of freedom:

Let $\operatorname{deg}(T)$ denote the maximum degree of a node in T (number of sons +1).

	$N(\varepsilon)$	$\operatorname{dof}(\varepsilon)$
$\begin{gathered} f \in B^{s} \\ f \in B^{s, \text { mix }} \end{gathered}$	$\sim \varepsilon^{-d / s}$ $\sim \varepsilon^{-1 / s}\|\log \boldsymbol{\varepsilon}\|^{d-1}$	

Asymptotically, we lose!

- Does not even include the cost to compute the approximations.

Schneider \& U. Preprint 2013

Discussion

- Only upper bounds for asymptotic rates...
- Sparse transfer tensors?

The estimates are upper bounds and not necessarily sharp: For example $f_{\Gamma(n)}$ is
a Tucker approximation with a sparse core tensor (hyperbolic cross).
For binary trees it seems it would not help in the worst case!

- Unfair comparison:

The mixed Sobolev spaces are by definition tailored to hyperbolic cross approximation.

- Black-box character / universality of HOSVD:

For specific, irregular functions it might be much better (characteristic function on square). Given that, it could be worse :-)
Open problem: What are the right function classes for tensor approximation?

Some remarks on the canonical format

- Canonical low-rank approximation:

Isn't the following more natural to consider?

$$
\inf \left\|f-\sum_{k=1}^{R} u_{k}^{1} \otimes \cdots \otimes u_{k}^{d}\right\|_{0}
$$

- Again Temlyakov:

$$
\sup _{f \in B^{s, \text { mix }}} \inf \left\|f-\sum_{k=1}^{R} u_{k}^{1} \otimes \cdots \otimes u_{k}^{d}\right\|_{0} \lesssim R^{-s d /(d-1)}
$$

No curse of dimension in the number of terms!

- Even U. (2011):

If $f \in B^{s, \text { mix }}$ and $\left\|f-\sum_{k=1}^{R} u_{k}^{1} \otimes \cdots \otimes u_{k}^{d}\right\|_{0}=\min$, then all $u_{k}^{\mu} \in H^{s}$.
\rightarrow Approximability!?

The problem of instability

- But...

When $d \geq 3$, then for given $r \geq 2$ a best approximation,

$$
\left\|f-\sum_{k=1}^{R} u_{k}^{1} \otimes \cdots \otimes u_{k}^{d}\right\|_{0}=\min
$$

might not exist!
cf. De Silva \& Lim 2008

- Ill conditioning:

It is in line with this fact that

- No stable method to calculate a solution close to the infimum is known.
- No reasonable bound on Sobolev norms for the factors could be given in my paper, even if existence of a minimum is assumed.

