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Motivation

• Curse of dimension:
High-dimensional problems, e.g. eigenvalue problems for functions of many
variables, become intractable when using standard discretization techniques
due to the exponential scaling of the discretized systems.

• Example: Electronic Schrödinger equation HΨ = EΨ,

H =
1
2

N

∑
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∆i−
N
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∑
ν=1

Zν

|xi−aν |
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1
|xi− xj|

,

operates on functions Ψ ∈ H1(R3N).

• Approaches:

• Sparse grids: Based on regularity

• Low-rank tensor techniques: Does regularity also help?



Regularity and linear approximation

Isotropic Sobolev class:
Let L2(πd) be the 2π periodic L2 functions. Consider the following subclass:

Bs = {f ∈ L2(πd) : ‖f‖s ≤ 1}, ‖f‖2
s = max

µ=1,2,...,d
‖f‖2

s,µ ,

‖f‖2
s,µ = ∑

k∈Zd

k2s
µ |̂f (k)|2, and kµ =

{
|kµ |, for kµ 6= 0,
1 for kµ = 0.



Regularity and linear approximation

• Approximation by trigonometric polynomials:
Obviously, the best approximation of f ∈ L2(πd) in the norm ‖ · ‖0 by a
trigonometric polynomial of degree at most n is

fn = ∑
|k|1≤n

f̂ (k)eik·x.

• Approximation error:
If f ∈ Bs, then

‖f − fn‖2
0 = ∑

|k|1>n
|̂f (k)|2 ≤ n−2s

∑
|k|1>n

|k|2s
1 |̂f (k)|2 . n−2s‖f‖2

s . n−2s.



Regularity and linear approximation

dof complexity:
The number of trigonometric polynomials of degree at most n grows like ∼ nd.
Thus, to approximate f ∈ Bs to an accuracy ε , we need an

N(ε). ε
−d/s (ε → 0)

dimensional linear subspace in general.



Regularity and linear approximation

• Kolmogorov N-width:
It is well known (Kolmogorov, 1936) that

dN(Bs,L2(πd)) = inf
VN⊂L2(πd)
dimVN=N

sup
f∈Bs

inf
g∈VN
‖f −g‖0 ∼ N−d/s (N→ ∞).

→ Approximation by trigonomeric polynomials is asymptotically optimal.

• Curse of dimension:
To keep N(ε)∼ ε−d/s tolerable for ε → 0, the regularity needs to grow with
dimension:

s∼ d.



Mixed regularity and linear approximation

A partial way out ...

• Mixed Sobolev class:
Consider functions from

Bs,mix = {f ∈ L2(πd) : ‖f‖s,mix ≤ 1},

‖f‖2
s,mix = ∑

k∈Zd

( d

∏
µ=1

kµ

)2s
|̂f (k)|2.

→ Mixed derivatives up to order ds!



Mixed regularity and linear approximation

• Hyperbolic cross approximation:

fΓ(n) = ∑
k∈Γ(n)

f̂ (k)eik·x,

Γ(n) =
{

k ∈ Zd :
d

∏
µ=1

kµ ≤ n
}
.

• Approximation error:
By the same reasoning as before: If f ∈ Bs,mix, then

‖f − fΓ(n)‖0 . n−s.



Hyperbolic cross



Mixed regularity and linear approximation

But this time...

dof complexity:
The space of polynomials with coefficients from the hyperbolic cross has
dimension

|Γ(n)| ∼ n−s| logn|s(d−1) (n→ ∞).

It can be shown that it follows

N(ε). ε
−1/s| logε|d−1 (ε → 0).



Mixed regularity and linear approximation

• Kolmogorov N-width:
It is known (Babenko, 1960) that

dN(Bs,mix,L2(πd))∼ N−s| logN|s(d−1) (N→ ∞).

→ Approximation by trigonomeric polynomials from the hyperbolic cross is
asymptotically optimal.

• Softened curse of dimension:
Leads to tolerable complexity at least up to d = 10 or so ...

• Yserentant’s results: Regularity and approximability of electronic wave
functions. Springer-Verlag, Berlin 2010.



Sums of separable functions

• Tensor product structure:
The approximation by trigonometric polynomials yield approximations by a
sum of separable functions:

∑ckeik·x = ∑ck

d

∏
µ=1

eikµ xµ = ∑
k

u1
k1
⊗·· ·⊗u1

kd

with fixed choice (dictionary) for the uµ

kµ
.

• Question: Is there a (general) gain in complexity by not restricting the factors
uµ

kµ
a priori, and if yes, in which function classes?

→ An appropriate, non-tautological answer is currently unknown.

• In this talk:
The answer is probably: asymptotically No in the classes Bs and Bs,mix.
It is believed that the classical notion of smoothness is not appropriate.
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Bilinear approximation

• Best bilinear approximation error:
For d ≥ 2, 1≤ a < d, y = (x1, . . . ,xa), z = (xa+1, . . . ,xd) let

τR(f ,a) = inf
u1,...,uR∈L2(πa)

v1,...,vR∈L2(πd−a)

∥∥∥∥∥f (x)−
R

∑
k=1

uk(y)vk(z)

∥∥∥∥∥
0

• How large one has to choose the rank R?
Study the quantities

sup
f∈Bs

τR(f ,a), sup
f∈Bs,mix

τR(f ,a).



Bilinear approximation

An equivalent formulation:
Let

Af : L2(πd−a)→ L2(πa), (Af v)(y) =
∫

f (y,z)v(z)dz

denote the assosiated Hilbert-Schmidt integral operator. Then the bilinear
approximation problem is equivalent to

inf
rankA≤r

‖Af −A‖HS.



A link to operator ideals

• “Solution”: Schmidt expansion (SVD):
Let

Af =
∞

∑
k=1

σkuk⊗ vk, {uk}, {vk} ONS, σk ≥ 0,

then

A =
R

∑
k=1

σkuk⊗ vk

satisfies

τR(f ,a) = ‖Af −A‖HS =

√
∞

∑
k=R+1

σ2
k .

→ Need singular value estimates of integral operators with kernels from Sobolev
classes

→ Close link to the theory of operator ideals.



Temlyakov’s results

• In a series of papers (1986-1993) Temlyakov proved (amongst much more
general results on Lp):

sup
f∈Bs

τR(f ,a)∼ R−smax(1/a,1/(d−a)) (R→ ∞),

R−2s(logR)2s(min(a,d−a)−1) . sup
f∈Bs,mix

τR(f ,a). R−2s(logR)2s(max(a,d−a)−1)

→ Required rank R(ε):
Let R(ε) denote the smallest r needed for accuracy ε , then

R(ε)

{
∼ ε−min(a,d−a)/s (ε → 0) for f ∈ Bs,
. ε−1/(2s)|logε|max(a,d−a)−1 (ε → 0) for f ∈ Bs,mix.



A gain?

• Number of required separable functions: Example d even, a = d/2:

N(ε) R(ε)

f ∈ Bs ∼ ε−d/s ∼ ε−d/(2s)

f ∈ Bs,mix ∼ ε−1/s|logε|d−1 ∼ ε−1/2s|logε|d/2−1

• BUT:
While N(ε) measures computational complexity (number of basis functions
from a fixed basis), R(ε) does not yet:

Since the singular vectors uk,vk are not known in advance, we need to make
sure we can approximate and store them efficiently.

Griebel, Harbrecht: Approximation of bi-variate functions: singular value decomposition versus
sparse grids, IMA J. Numer. Anal. 2013.



Approximation of singular vectors

• If we approximate uk,vk by ũk, ṽk to an accuracy to accuracy εR(ε)−1/2/σk
and put

f̃ =
R(ε)

∑
k=1

σkũk⊗ ṽk,

then
‖f − f̃‖. ε.

(Griebel and Harbrecht, 2013)

• How many degrees of freedom do we have to spend to achieve this
accuracy?



Regularity of singular vectors

• Mapping properties of integral operators:
The left singular vectors satisfy

σkuk(y) = (Af vk)(y) = σk

∫
f (y,z)vk(z)dz

→ ‖uk‖s ≤ ‖f‖s,1/σk (similar for vk)

• Linear approximation:
Approximate uk to accuracy εR(ε)−1/2/σk requires (in general)
∼ (εR(ε)−1/2)−1/s dofs. This we have to do 2R(ε) times

→ dof(ε). ε−1/sR(ε)1+1/(2s).



Comparison

• Required degrees of freedom: Example d = 2, a = 1:

N(ε) R(ε) dof(ε)

f ∈ Bs ∼ ε−2/s ∼ ε−1/s ∼ ε−2/sε−1/(2s2)

f ∈ Bs,mix ∼ ε−1/s| logε| ∼ ε−1/2s ∼ ε−1/sε−1/(2s)−1/(4s2)

Asymptotically, we lose!

• Does not even include the cost to compute the approximations.
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Minimal subspaces

Recursively split variables...

• Integral operators:
Let f ∈ L2(πd), t = µ1, . . . ,µ|t| ( 1,2, . . . ,d. Set xt = (xµ1 , . . . ,xµ|t|) and
tc = {1, . . . ,d}\ t. Define the integral operator

(At
f v)(xt) =

∫
f (xt,xtc)v(xtc)dxtc

• Minimal t-subspace: t-rank:

Ut
f := ran(At

f ) rankt(f ) = rank(At
f ) = dim(Ut

f )

Both definitions are due to Hitchcock (1927).



Nestedness

Main observation:
Let t = t1∪̇t2∪̇ . . . ∪̇tN , then

Ut
f ⊆ Ut1

f ⊗Ut2
f ⊗·· ·⊗UtN

f .

In particular, if t = {1,2, . . . ,d} then

f ∈ Ut1
f ⊗Ut2

f ⊗·· ·⊗UtN
f .

This nestedness is the starting point for the hierarchical Tucker representations.



Hierarchical tensor format

Hackbusch & Kühn (2009), Grasedyck (2010), Oseledets & Tyrtyshnikov (2009), Quantum
chemistry . . .

Dimension tree:
T ⊆ 2{1,2,...,d} is called a dimenson tree, if

(i) the root is tr = {1,2, . . . ,d} ∈ T ,

(ii) every node t ∈ T that is not a leaf has at least two nonempty sons t1, t2, . . . , tnt ∈ T
such that t = t1∪ t2∪·· ·∪ tnt is a disjoint union,

(iii) the leaves are {µ}, µ = 1,2, . . . ,d.



Hierarchical tensor format

• HT format:
Let T be a dimension tree and r = (rt)t∈T\{tr} a set of ranks rt ∈ N∪{+∞}.
Let rtr = 1 for the root. f ∈ L2(πd) is (T,r)-decomposable if it can be
decomposed in the following form.

(i) To every node t ∈ T \{tr} an rt-dimensional subspace Ut ⊂ L2(π|t|) is associated
in form of a basis ut

1,u
t
2, . . . ,u

t
rt

. For the root let utr
1 = f .

(ii) For every node t ∈ T having sons t1, t2, . . . , tnt there exists a transfer tensor
β

t ∈ Rrt×rt1×rt2×···×rnt such that it holds

ut
k(x

t1 ,xt2 , . . . ,xtnt ) =

rt1

∑
k1=1

rt2

∑
k2=1
· · ·

rtnt

∑
knt=1

β
t
k,k1,k2,...,knt

ut1
k1
(xt1)ut2

k2
(xt2) · · ·utnt

knt
(xtnt ).

• The set of (T,r)-decomposable functions will be denoted by H≤r,T .



Hierarchical tensor format

{1,2,3,4,5}

{1,2,3} {4,5}

{4} {5}

{2} {3}

{1} {2,3}

= tr

= t

= t2= t1

(a)

β
{1,2,3,4,5}→ f

β
{1,2,3}→ U{1,2,3} β

{4,5}→ U{4,5}

U{4} U{5}

U{2} U{3}

U{1} β
{2,3}→ U{2,3}

r{4,5}

r{5}r{2,3}

r{3}r{2}

r{1} r{4}

r{1,2,3}

(b)

Figure : (a) A binary dimension tree for {1,2,3,4,5}, (b) parameters of the (T,r)-decomposition.



Tucker format

{1,2,3,4,5}

{3} {4} {5}{2}{1}

f ∈H≤r,T can be written as

f (x1, . . . ,xd) =
r1

∑
k1=1
· · ·

rd

∑
kd=1

βk1,...,kd u1
k1
(x1) · · ·ud

kd
(xd).



How to obtain approximations from H≤r,T?

• Single SVD projection:
Let f t(xt,xtc) = ∑

∞
kt=1 σ t

kt
ut

kt
(xt)vt

kt
(xtc) be an SVD at node t. Let Pt,rt

f be the
orthogonal projection onto span{ut

1, . . . ,u
t
rt}⊗ span{vt

1, . . . ,v
t
rt}, that is,

Pt,rt
f f =

rt

∑
kt=1

σ
t
kt

ut
kt
⊗ vt

kt
.

• HOSVD projection:
From leaves to root ...

Pr
f = Pr

f ,LPr
f ,L−1 · · ·Pr

f ,1, with Pr
f ,l = ∏

level(t)=l
Pt,rt

f .

→ Pr
f f ∈H≤r,T



Approximation error

• Quasi-optimality of HOSVD:

‖f −Pr
f f‖2

0 ≤ ∑
t∈T\{tr}

‖f −Pt,rt
f f‖2

0

= ∑
t∈T\{tr}

∑
kt≥rt+1

(σ t
kt
)2 ≤ (|T|−1) inf

g∈H≤r,T
‖f −g‖2

0

De Lathauwer et al. (2000), Grasedyck (2010)

• It follows:
τr(f ,T) = inf

H≤r,T
‖f −g‖ ∼ ∑

t∈T\{tr}
τrt(f , |t|)



Required degrees of freedom

Play the same game as before...

• Required ranks:
Use Temlyakov’s results on bilinear approximation to esimate the required
ranks rt(ε) to achieve error ε in every term of ∑t∈T\{tr} τrt(f , |t|).

• Overall cost of the hierarchical format:

dof(ε)≤ ∑
t ∈ T not leaf

rt(ε)
nt

∏
i=1

rti(ε) (size of transfer tensors β t)

+
d

∑
µ=1

dof to approximate u{µ}1 , . . . ,u{µ}r{µ}(ε)
in the leaves

• For the basis functions in the leaves, exploit again their regularity.



Results

• Required degrees of freedom:
Let deg(T) denote the maximum degree of a node in T (number of sons + 1).

N(ε) dof(ε)

f ∈ Bs ∼ ε−d/s
{
. ε−d/s, if d > 2+1/(2s)
∼ ε−(2+1/(2s))/s, else

f ∈ Bs,mix ∼ ε−1/s| logε|d−1
{

. ε−deg(T)/(2s)|logε|N(T), if deg(T)≥ 3+1/(2s)

. ε−3/(2s)ε−1/(4s2)|logε|(1+1/(2s))(d−2), else

Asymptotically, we lose!

• Does not even include the cost to compute the approximations.

Schneider & U. Preprint 2013



Discussion

• Only upper bounds for asymptotic rates...

• Sparse transfer tensors?
The estimates are upper bounds and not necessarily sharp: For example fΓ(n) is
a Tucker approximation with a sparse core tensor (hyperbolic cross).
For binary trees it seems it would not help in the worst case!

• Unfair comparison:
The mixed Sobolev spaces are by definition tailored to hyperbolic cross
approximation.

• Black-box character / universality of HOSVD:
For specific, irregular functions it might be much better (characteristic
function on square). Given that, it could be worse :-)
Open problem: What are the right function classes for tensor approximation?



Some remarks on the canonical format

• Canonical low-rank approximation:
Isn’t the following more natural to consider?

inf
∥∥∥f −

R

∑
k=1

u1
k⊗·· ·⊗ud

k

∥∥∥
0

• Again Temlyakov:

sup
f∈Bs,mix

inf
∥∥∥f −

R

∑
k=1

u1
k⊗·· ·⊗ud

k

∥∥∥
0
. R−sd/(d−1)

No curse of dimension in the number of terms!

• Even U. (2011):
If f ∈ Bs,mix and ‖f −∑

R
k=1 u1

k⊗·· ·⊗ud
k‖0 = min, then all uµ

k ∈ Hs.
→ Approximability!?



The problem of instability

• But...
When d ≥ 3, then for given r ≥ 2 a best approximation,∥∥∥f −

R

∑
k=1

u1
k⊗·· ·⊗ud

k

∥∥∥
0
= min,

might not exist!
cf. De Silva & Lim 2008

• Ill conditioning:
It is in line with this fact that

• No stable method to calculate a solution close to the infimum is known.

• No reasonable bound on Sobolev norms for the factors could be given in my
paper, even if existence of a minimum is assumed.
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