Greedy low-rank approaches to general linear matrix equations

Daniel Kressner and Petar Sirković

EPF Lausanne, MATHICSE, ANCHP

Disentis, 14-16 August, 2013

Outline

(1) General linear matrix equations
(2) Low-rank approximations
(3) Greedy rank-1 updates
(4) Improvements
(5) Conclusions

Outline

(1) General linear matrix equations
(2) Low-rank approximations
(3) Greedy rank-1 updates
(4) Improvements
(5) Conclusions

General linear matrix equations

Solve in $X \in \mathbb{R}^{n \times n}$

$$
\begin{equation*}
\sum_{k=1}^{K} A_{k} X B_{k}^{T}=C D^{T} \tag{GLME}
\end{equation*}
$$

- $A_{1}, \ldots, A_{K}, B_{1}, \ldots, B_{K} \in \mathbb{R}^{n \times n}, C, D \in \mathbb{R}^{n \times \ell}$
- usually $\ell \ll n$
- n^{2} unknowns $=$ entries of X
- applications in control theory (Simoncini, 2013), image science (Bouhamidi et al., 2012), Focker-Planck equation (Hartmann et al., 2010)
- recent survey paper by V. Simoncini: "The efficient numerical solution to (GLME) thus represents the next frontier for linear matrix equations ..."

Important special case - Lyapunov equation

Solve in $X \in \mathbb{R}^{n \times n}$

$$
\begin{equation*}
A X+X A^{T}=-B B^{T} \tag{LYAP}
\end{equation*}
$$

- ubiquitous in control theory
- various efficient methods available (Simoncini, 2013) such as Bartels-Stewart, Krylov subspace methods, low-rank ADI

Derivation of Lyapunov equation I

Given the control system

$$
\begin{aligned}
x^{\prime}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Controllability Gramian P is defined as

$$
P=\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t
$$

It can easily be shown that P is the solution of Lyapunov equation

$$
A P+P A^{T}+B B^{T}=0
$$

Derivation of Lyapunov equation II

$$
\begin{aligned}
A P+P A^{T} & =\int_{0}^{\infty}\left(A e^{A t} B B^{T} e^{A^{T} t}+e^{A t} B B^{T} e^{A^{T} t} A^{T}\right) d t \\
& =\int_{0}^{\infty} \frac{\partial}{\partial t}\left(e^{A t} B B^{T} e^{A^{T} t}\right) d t \\
& =\left.\left(e^{A t} B B^{T} e^{A^{T} t}\right)\right|_{t=0} ^{\infty} \\
& =0-B B^{T}=-B B^{T}
\end{aligned}
$$

Derivation of generalized Lyapunov equation

Given the control system

$$
\begin{aligned}
x^{\prime}(t) & =A x(t)+\sum_{k=1}^{K} N_{k} x(t) u(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Controllability Gramian P is defined similarly as before, and it can be shown that P is the solution of generalized Lyapunov equation

$$
A P+P A^{T}+\sum_{k=1}^{K} N_{k} P N_{k}^{T}+B B^{T}=0
$$

Special case - Generalized Lyapunov equation

Solve in $X \in \mathbb{R}^{n \times n}$

$$
A X+X A^{T}+\sum_{k=1}^{K} N_{k} X N_{k}^{T}=-B B^{T}
$$

(GLYAP)

- applications in bilinearization of nonlinear problems, Focker-Planck equation, heat equation with Robin boundary conditions

Solving GLME

General linear matrix equation

$$
\sum_{k=1}^{K} A_{k} X B_{k}^{T}=C D^{T}
$$

- naive approach $=$ transform GLME into linear system of size $n^{2} \times n^{2}$:

$$
\sum_{k=1}^{K}\left(B_{k} \otimes A_{k}\right) \operatorname{vec}(X)=: \mathcal{A} \operatorname{vec}(X)=\operatorname{vec}\left(C D^{T}\right)(\mathrm{vGLME})
$$

\Rightarrow severe limitation on n with classical methods

- most techniques for solving Lyapunov equations (e.g., Krylov subspace methods) do not extend to (GLME) directly

Outline

(1) General linear matrix equations

(2) Low-rank approximations
(3) Greedy rank-1 updates
(4) Improvements
(5) Conclusions

Singular value decay and low-rank approximations I

Solution of (GLME) often exhibits very strong singular value decay.

Example of GLYAP - Singular value decay

Singular value decay and low-rank approximations II

Natural assumption:

Exact solution can be well approximated by low-rank matrix.

Many existing algorithms exploit this idea for (LYAP). Existing low-rank approaches to (GLYAP):

- fixed-point method with ADI-preconditioning (Damm, 2008)
- preconditioned Krylov subspace methods (Benner et al., 2010),

Both mainly limited to the case where Lyapunov part $A X+X A^{T}$ dominates (GLYAP).

Low-rank approximations

X has low-rank structure \Rightarrow can be written as a sum of rank-1 matrices.

Outline

(1) General linear matrix equations

(2) Low-rank approximations
(3) Greedy rank-1 updates

4 Improvements
(5) Conclusions

Rank-1 updates

Idea how to exploit this: Greedy updates (inspired by Chinesta et al., 2010)

- Assume current approximation $X_{\text {old }}=$ sum of i rank-1 matrices
- Get new approximation $X_{\text {new }} \leftarrow X_{\text {old }}+u v^{T}$ by choosing $u v^{T}$ optimally
- Optimality depends on the choice of target functional \mathcal{J}. Two possibilities:
- energy norm $\mathcal{J}\left(X_{a}, u, v\right)=\left\|\operatorname{vec}\left(X_{a}+u v^{T}\right)-\operatorname{vec}(X)\right\|_{\mathcal{A}}$
- residual $\mathcal{J}\left(X_{a}, u, v\right)=\left\|\mathcal{A} \operatorname{vec}\left(X_{a}+u v^{T}-X\right)\right\|_{2}$
- For either criterion, ALS is used to determine minimum \Rightarrow solution of one $n \times n$ linear system in every iteration

ALS minimization I

Goal: Minimize $\left\|\operatorname{vec}\left(X_{a}+u v^{T}\right)-\operatorname{vec}(X)\right\|_{\mathcal{A}}$

This is equivalent to

$$
\min _{u, v} \operatorname{tr}\left(v u^{T}\left(\sum_{k=1}^{K} A_{k} u v^{T} B_{k}^{T}\right)\right)-2 \operatorname{tr}\left(v u^{T} Q_{i}\right)
$$

We alternate between optimization over u and v, other variable stays fixed. For a fixed v, optimal \hat{u} is a local minimum \Rightarrow satisfies

$$
\begin{aligned}
& \operatorname{tr}\left(v \hat{u}^{T}\left(\sum_{k=1}^{K} A_{k} \hat{u} v^{T} B_{k}^{T}\right)\right)-2 \operatorname{tr}\left(v \hat{u}^{T} Q_{i}\right) \approx \\
& \operatorname{tr}\left(v(\hat{u}+\Delta)^{T}\left(\sum_{k=1}^{K} A_{k}(\hat{u}+\Delta) v^{T} B_{k}^{T}\right)\right)-2 \operatorname{tr}\left(v(\hat{u}+\Delta)^{T} Q_{i}\right)
\end{aligned}
$$

for all small Δ.

ALS minimization II

After disregarding second-order terms we get following equation

$$
\frac{1}{2}\left(\sum_{k=1}^{K}\left(A_{k} \hat{u} v^{T} B_{k}^{T} v+A_{k}^{T} \hat{u} v^{T} B_{k} v\right)\right)-Q_{i} v=0
$$

Since $v^{T} B_{k} v$ is a scalar we get

$$
\frac{1}{2}\left(\sum_{k=1}^{K}\left(v^{T} B_{k}^{T} v A_{k}+v^{T} B_{k} v A_{k}^{T}\right)\right) \hat{u}=Q_{i} v
$$

To compute $\hat{u}, n \times n$ linear system has to be solved.
For fixed u, we get similar equation for \hat{v}.

Algorithm - Greedy rank-1 updates

Require: $A_{1}, \ldots, A_{K}, B_{1}, \ldots, B_{K}, C, D$
Ensure: low rank approximation X_{a}
1: $X_{a}=0$
2: $Q=C D^{T}$
3: for $i=1, \ldots$, \#maxrank do
4: $\quad u_{i}, v_{i}$ random $n \times 1$ matrices
5: for until convergence do
$\begin{array}{ll}\text { 6: } & u_{i} \leftarrow \arg \min _{u_{i}} \mathcal{J}\left(X_{a}, u_{i}, v_{i}\right) \\ \text { 7: } & v_{i} \leftarrow \operatorname{rarg} \min _{v_{i}} \mathcal{J}\left(X_{a}, u_{i}, v_{i}\right)\end{array}$
8: end for
9: $\quad X_{a} \leftarrow X_{a}+u_{i} v_{i}^{T}$
10: $\quad Q \leftarrow Q-\sum_{k=1}^{K} A_{k} u_{i} v_{i}^{T} B_{k}^{T}$
11: end for
12: X_{a} wanted approximation

Lyapunov equation - convergence

Figure: Convergence of successive rank-1 updates for symmetric positive definite (LYAP) - comparison of singular values and error.

Analysis

Theorem

For symmetric positive-definite (LYAP) with symmetric semidefinite right-hand side, minimum of ALS is always attained in a point where $U=V$.

Corollary

For symmetric positive-definite (LYAP) with symmetric semidefinite right-hand side convergence is monotonic in Löwner ordering on positive semidefinite matrices.

Generalized Lyapunov equation I

Heat equation with the control in the boundary condition:

$$
\begin{aligned}
x_{t} & =\Delta x & & \\
n \cdot \nabla x & =0.5 \cdot u(x-1) & & \text { on } \Gamma_{1}, \Gamma_{2} \\
x & =0 & & \text { on } \Gamma_{3}, \Gamma_{4}
\end{aligned}
$$

Each Robin boundary condition introduces a coupling between $x(t)$ and $u(t) \Rightarrow$ two matrices $N_{i} \Rightarrow$ resulting equation:

$$
A X+X A^{T}+N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}=-B B^{T}
$$

$$
\begin{gathered}
\text { System matrix } \\
\mathcal{A}=(A \otimes I)+(I \otimes A)+(N 1 \otimes N 1)+(N 2 \otimes N 2)
\end{gathered}
$$

Generalized Lyapunov equation II

Convergence of algorithm depends on the fact if the system matrix \mathcal{A} in (vGLME) is positive definite.

Figure: GLYAP heat equation with Robin b.c. - positive definite \mathcal{A}, minimization of energy norm

Figure: GLYAP heat equation with Robin b.c. - indefinite \mathcal{A}, minimization of residual

Outline

(1) General linear matrix equations

(2) Low-rank approximations
(3) Greedy rank-1 updates
(4) Improvements
(5) Conclusions

Galerkin projections

Greedy rank-1 updates

$$
X_{a}=u_{1} v_{1}^{T}+u_{2} v_{2}^{T}+\cdots+u_{m} v_{m}^{T}
$$

- Idea: Collect direction of updates in subspaces

$$
\mathcal{U}=\operatorname{span}\left(\left\{u_{1}, \ldots, u_{m}\right\}\right), \mathcal{V}=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{m}\right\}\right)
$$

- Obtain (hopefully) improved approximation by Galerkin projection on $\mathcal{V} \otimes \mathcal{U}$

$$
\Uparrow
$$

approximate solution $X_{a}=U Y V^{T}, Y \in \mathbb{R}^{m \times m}$

- Cost $=$ solving linear system of size $m^{2} \times m^{2}$

Galerking projections example

Approach actually fixes convergence problems for indefinite (GLYAP).

Figure: Greedy rank-1 updates

Figure: Greedy rank-1 updates + Galerkin

Bilinearization of RC circuit I

$$
\begin{gathered}
v_{t}=f(v)+b u(t) \\
f(v)=\left[f_{k}(v)\right]=\left(\begin{array}{c}
-g\left(v_{1}\right)-g\left(v_{1}-v_{2}\right) \\
g\left(v_{1}-v_{2}\right)-g\left(v_{2}-v 3\right) \\
\vdots \\
g\left(v_{N_{0}-1}-v_{N_{0}}\right)
\end{array}\right) \\
g(v)=\exp (40 v)+v-1
\end{gathered}
$$

Carleman bilinearization \Rightarrow matrix equation of size $\left(N_{0}+N_{0}^{2}\right) \times\left(N_{0}+N_{0}^{2}\right)$.

$$
A X+X A^{T}+N X N^{T}=-B B^{T}
$$

Bilinearization of RC circuit II

Figure: Bilinearization of RC circuit - convergence of the residual with Galerkin approach

- convergence is slow
- possibly needs preconditioning

Preconditioned residual I

Idea: Inject few dominant vectors of preconditioned residual to the subspaces U and V.

- preconditioner $\mathcal{P}^{-1}=$ one iteration of iterative Lyapunov solver (using matrix sign function)
- $P_{U} \Sigma P_{V}=\mathcal{P}^{-1}\left(Q_{i}\right)$ and truncate
-

$$
\begin{aligned}
& \mathcal{U} \leftarrow \operatorname{span}\left(\mathcal{U} \cup P_{U}\right) \\
& \mathcal{V} \leftarrow \operatorname{span}\left(\mathcal{V} \cup P_{V}\right)
\end{aligned}
$$

- Galerking projection on \mathcal{U} and \mathcal{V}
- truncation of subspaces if needed

Preconditioned residual II

Using preconditioned residual improves the convergence!

Figure: Bilinear RC circuit - no preconditioning

Figure: Bilinear RC circuit preconditioned residual

Outline

(1) General linear matrix equations
(2) Low-rank approximations
(3) Greedy rank-1 updates
(4) Improvements
(5) Conclusions

Conclusions

- general linear matrix equations
- low-rank approximation - Greedy rank-1 updates
- Galerkin projection - fixes indefinite case
- using preconditioned residual - accelerates the convergence

Thank you for your attention!

Selected references

围 Bai，Z．and Skoogh，D．，A projection method for model reduction of bilinear dynamical systems， 2006
囦 Benner，P．and Breiten，T．，Low rank methods for a class of generalized Lyapunov equations and related issues， 2012
Rouhamidi，A．and Jbilou，K．and Reichel，L．and Sadok，H．，A generalized global Arnoldi method for ill－posed matrix equations， 2012
（ Chinesta，F．and Ammar，A．and Cueto，E．，Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models， 2010
目 Damm，T．，Direct methods and ADI－preconditioned Krylov subspace methods for generalized Lyapunov equations， 2008
（ Simoncini，V．，Computational methods for linear matrix equations， 2013

