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Bayesian Inverse Problems (Stuart 2010)
Find the unknown data u ∈ X from noisy observations

δ = G(u) + η,

X separable Banach space

G : X 7→ X the forward map

Abstract Operator Equation

Given u ∈ X, find q ∈ X : A(u; q) = f

with A ∈ L(X ,Y ′), X , Y reflexive Banach spaces, a(v,w) :=Y 〈w,Av〉Y′ ∀v ∈ X ,w ∈ Y
corresponding bilinear form

O : X 7→ RK bounded, linear observation operator

G : X 7→ RK uncertainty-to-observation map, G = O ◦ G

η ∈ RK the observational noise (η ∼ N (0,Γ))
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Bayesian Inverse Problems (Stuart 2010)
Find the unknown data u ∈ X from noisy observations

δ = G(u) + η,

X separable Banach space

G : X 7→ X the forward map

O : X 7→ RK bounded, linear observation operator

G : X 7→ RK uncertainty-to-observation map, G = O ◦ G

η ∈ RK the observational noise (η ∼ N (0,Γ))

Least squares potential Φ : X × RK → R

Φ(u; δ) :=
1
2

(
(δ − G(u))>Γ−1(δ − G(u))

)
Reformulation of the forward problem with unknown stochastic input
data as an infinite dimensional, parametric deterministic problem
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Bayesian Inverse Problems (Stuart 2010)

Parametric representation of the unknown u

u = u(y) := 〈u〉+
∑
j∈J

yjψj ∈ X

y = (yj)j∈J i.i.d sequence of real-valued random variables yj ∼ U [−1, 1]

〈u〉, ψj ∈ X

J finite or countably infinite index set

Prior measure on the uncertain input data

µ0(dy) :=
⊗
j∈J

1
2
λ1(dyj) .

(U,B) =
(

[−1, 1]J,
⊗

j∈J B
1[−1, 1]

)
measurable space
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(p, ε) Analyticity

(p, ε) : 1 (well-posedness)

For each y ∈ U, there exists a unique realization u(y) ∈ X and a unique solution
q(y) ∈ X of the forward problem. This solution satisfies the a-priori estimate

∀y ∈ U : ‖q(y)‖X ≤ C0(y) ,

where U 3 y 7→ C0(y) ∈ L1(U;µ0).

(p, ε) : 2 (analyticity)

There exist 0 < p < 1 and b = (bj)j∈J ∈ `p(J) such that for 0 < ε < 1, there exist Cε > 0
and ρ = (ρj)j∈J of poly-radii ρj > 1 such that∑

j∈J

ρjbj ≤ 1− ε ,

and U 3 y 7→ q(y) ∈ X admits an analytic continuation to the open polyellipse
Eρ :=

∏
j∈J Eρj ⊂ CJ with

∀z ∈ Eρ : ‖q(z)‖X ≤ Cε(y) .
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Sparsity of the Forward Solution

Theorem (Chkifa, Cohen, DeVore and Schwab)
Assume that the parametric forward solution map q(y) admits a (p, ε)-analytic
extension to the poly-ellipse Eρ ⊂ CJ.

The Legendre series converges unconditionally,

q(y) =
∑
ν∈F

qP
νPν(y) in L∞(U, µ0;X )

with Legendre polynomials Pk(1) = 1, ‖Pk‖L∞(−1,1) = 1 , k = 0, 1, ....

There exists a p-summable, monotone envelope q = {qν}ν∈F ,
i.e. qν := supµ≥ν ‖q

P
ν‖X with C(p, q) := ‖q‖`p(F) <∞ .

and monotone ΛP
N ⊂ F corresponding to the N largest terms of q

with
sup
y∈U

∥∥∥q(y)−
∑
ν∈ΛP

N

qP
νPν(y)

∥∥∥
X
≤ C(p, q)N−(1/p−1) .
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(p, ε) Analyticity of Affine Parametric Operator Families
Affine Parametric Operator Families

A(y) = A0 +
∑
j∈J

yjAj ∈ L(X ,Y ′) .

Assumption A1 There exists µ > 0 such that

inf
0 6=v∈X

sup
06=w∈Y

a0(v,w)

‖v‖X‖w‖Y
≥ µ0 , inf

0 6=w∈Y
sup

0 6=v∈X

a0(v,w)

‖v‖X‖w‖Y
≥ µ0

Assumption A2 There exists a constant 0 < κ < 1∑
j∈J

bj ≤ κ < 1 , where bj := ‖A−1
0 Aj‖L(X ,Y′)

Assumption A3 For some 0 < p < 1

‖b‖p
`p(J) =

∑
j∈J

bp
j <∞
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(p, ε) Analyticity of Affine Parametric Operator Families

Theorem (Cohen, DeVore and Schwab 2010)
Under Assumption A1 - A3, for every realization y ∈ U of the
parameters, A(y) is boundedly invertible, uniformly with respect to the
parameter sequence y ∈ U.

For the parametric bilinear form a(y; ·, ·) : X × Y → R, there holds the
uniform inf-sup conditions with µ = (1− κ)µ0,

∀y ∈ U : inf
06=v∈X

sup
0 6=w∈Y

a(y; v,w)

‖v‖X ‖w‖Y
≥ µ , inf

06=w∈Y
sup

06=v∈X

a(y; v,w)

‖v‖X ‖w‖Y
≥ µ .

The forward map q : U → X , q := G(u) and the
uncertainty-to-observation map G : U → RK are globally Lipschitz and
(p, ε)-analytic with 0 < p < 1 as in Assumption A3.
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Examples

Stationary Elliptic Diffusion Problem

A1(u; q) := −∇ ·
(
u∇q

)
= f in D, q = 0 in ∂D

with X = Y = V = H1
0(D).

Time Dependent Diffusion

A2(y) := (∂t + A1(y), ι0)

where ι0 denotes the time t = 0 trace,

X = L2(0, T; V) ∩ H1(0, T; V∗), Y = L2(0, T; V)× H.
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Bayesian Inverse Problem

Theorem (Schwab and Stuart 2011)

Assume that G(u)
∣∣∣
u=〈u〉+

∑
j∈J yjψj

is bounded and continuous.

Then µδ(dy), the distribution of y ∈ U given δ, is absolutely continuous
with respect to µ0(dy), ie.

dµδ

dµ0
(y) =

1
Z

Θ(y)

with the parametric Bayesian posterior Θ given by

Θ(y) = exp
(
−Φ(u; δ)

)∣∣∣
u=〈u〉+

∑
j∈J yjψj

,

and the normalization constant

Z =

∫
U

Θ(y)µ0(dy) .
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Bayesian Inverse Problem

Expectation of a Quantity of Interest φ : X → S

Eµ
δ
[φ(u)] = Z−1

∫
U

exp
(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=〈u〉+

∑
j∈J yjψj

µ0(dy) =: Z′/Z

with Z =
∫

y∈U exp(− 1
2

(
(δ − G(u))>Γ−1(δ − G(u))

)
)µ0(dy).

Reformulation of the forward problem with unknown stochastic input data
as an infinite dimensional, parametric deterministic problem

Parametric, deterministic representation of the derivative of the posterior
measure with respect to the prior µ0

Approximation of Z′ and Z to compute the expectation of QoI under the
posterior given data δ

Efficient algorithm to approximate the conditional expectations given
the data with dimension-independent rates of convergence

C. Schillings (SAM) Sparsity in Bayesian Inversion Pro*Doc - August 15, 2013 9 / 24



Sparsity of the Posterior Density

Theorem (C.S. and Ch. Schwab 2013)
Assume that the forward solution map U 3 y 7→ q(y) is (p, ε)-analytic for
some 0 < p < 1.
Then the Bayesian posterior density Θ(y) is, as a function of the
parameter y, likewise (p, ε)-analytic, with the same p and the same ε.

N-term Approximation Results

sup
y∈U

∥∥∥Θ(y)−
∑
ν∈ΛP

N

ΘP
νPν(y)

∥∥∥
X
≤ N−s‖θP‖`p

m(F), s :=
1
p
− 1 .

Adaptive Smolyak quadrature algorithm with convergence rates
depending only on the summability of the parametric operator
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Univariate Quadrature

Univariate quadrature operators of the form

Qk(g) =

nk∑
i=0

wk
i · g(zk

i )

with g : [−1, 1] 7→ S for some Banach space S

(Qk)k≥0 sequence of univariate quadrature formulas

(zk
j )

nk
j=0 ⊂ [−1, 1] with zk

j ∈ [−1, 1] ,∀j, k and zk
0 = 0 , ∀k quadrature points

wk
j , 0 ≤ j ≤ nk, ∀k ∈ N0 quadrature weights

Assumption 1

(i) (I − Qk)(gk) = 0 , ∀gk ∈ Pk = span{yj : j ∈ N0, j ≤ k}
with I(gk) =

∫
[−1,1] gk(y)λ1(dy)

(ii) wk
j > 0 , 0 ≤ j ≤ nk, ∀k ∈ N0.
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Univariate Quadrature

Univariate quadrature operators of the form

Qk(g) =

nk∑
i=0

wk
i · g(zk

i )

with g : [−1, 1] 7→ S for some Banach space S

(Qk)k≥0 sequence of univariate quadrature formulas

(zk
j )

nk
j=0 ⊂ [−1, 1] with zk

j ∈ [−1, 1] ,∀j, k and zk
0 = 0 , ∀k quadrature points

wk
j , 0 ≤ j ≤ nk, ∀k ∈ N0 quadrature weights

Univariate quadrature difference operator

∆j = Qj − Qj−1, j ≥ 0

with Q−1 = 0 and z0
0 = 0,w0

0 = 1
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Univariate Quadrature
Univariate quadrature operators of the form

Qk(g) =

nk∑
i=0

wk
i · g(zk

i )

with g : [−1, 1] 7→ S for some Banach space S

(Qk)k≥0 sequence of univariate quadrature formulas
(zk

j )
nk
j=0 ⊂ [−1, 1] with zk

j ∈ [−1, 1] ,∀j, k and zk
0 = 0 , ∀k quadrature points

wk
j , 0 ≤ j ≤ nk, ∀k ∈ N0 quadrature weights

Univariate quadrature operator rewritten as telescoping sum

Qk =

k∑
j=0

∆j

with Zk = {zk
j : 0 ≤ j ≤ nk} ⊂ [−1, 1] set of points corresponding to Qk
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Tensorization

Tensorized multivariate operators

Qν =
⊗
j≥1

Qνj , ∆ν =
⊗
j≥1

∆νj

with associated set of multivariate points Zν = ×j≥1Zνj ∈ U

If ν = 0F , then ∆νg = Qνg = g(z0F ) = g(0F )

If 0F 6= ν ∈ F , with ν̂ = (νj)j 6=i

Qνg = Qνi (t 7→
⊗
j≥1

Qν̂j gt) , i ∈ Iν

and
∆νg = ∆νi (t 7→

⊗
j≥1

∆ν̂j gt) , i ∈ Iν ,

for g ∈ Z, gt is the function defined on ZN by
gt(ŷ) = g(y), y = (. . . , yi−1, t, yi+1, . . .) , i > 1 and y = (t, y2, . . .) , i = 1
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Sparse Quadrature Operator

For any finite monotone set Λ ⊂ F , the quadrature operator is defined
by

QΛ =
∑
ν∈Λ

∆ν =
∑
ν∈Λ

⊗
j≥1

∆νj

with associated collocation grid

ZΛ = ∪ν∈ΛZν

Theorem
For any monotone index set ΛN ⊂ F , the sparse quadrature QΛN is
exact for any polynomial g ∈ PΛN , i.e. it holds

QΛN (g) = I(g), ∀g ∈ PΛN ,

with PΛN = span{yν : ν ∈ ΛN} and I(g) =
∫

U g(y)µ0(dy).
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Convergence Rates for Adaptive Smolyak Integration

Theorem
Assume that the forward solution map U 3 y 7→ q(y) is (p, ε)-analytic for some
0 < p < 1.

Then there exist two sequences (Λ1
N)N≥1, (Λ2

N)N≥1 of monotone index
sets Λ1,2

N ⊂ F such that #Λ1,2
N ≤ N and

|I[Θ]−QΛ1
N
[Θ]| ≤ C1N−s ,

with s = 1/p− 1, I[Θ] =
∫

U Θ(y)µ0(dy) and,

‖I[Ψ]−QΛ2
N
[Ψ]‖X ≤ C2N−s , s =

1
p
− 1 .

with s = 1/p− 1, I[Ψ] =
∫

U Ψ(y)µ0(dy), C1,C2 > 0 independent of N.

C.S. and Ch. Schwab. Sparsity in Bayesian Inversion of Parametric Operator Equations, 2013.
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Convergence Rates for Adaptive Smolyak Integration

Sketch of proof

Relating the quadrature error with the Legendre coefficients

|I(Θ)−QΛ(Θ)| ≤ 2 ·
∑
ν /∈Λ

γν |θP
ν |

and
‖I(Ψ)−QΛ(Ψ)‖X ≤ 2 ·

∑
ν /∈Λ

γν‖ψP
ν‖X

for any monotone set Λ ⊂ F , where γν :=
∏

j∈J(1 + νj)
2.

(γν |θP
ν |)ν∈F ∈ lpm(F) and (γν‖ψP

ν‖X )ν∈F ∈ lpm(F).

⇒ ∃ sequence (ΛN)N≥1 of monotone sets ΛN ⊂ F , #ΛN ≤ N, such that
the Smolyak quadrature converges with order 1/p− 1.
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Adaptive Construction of the Monotone Index Set

Successive identification of the N largest contributions

|∆ν(Θ)| = |
⊗
j≥1

∆νj(Θ)| , ν ∈ F

→ A. Chkifa, A. Cohen and Ch. Schwab. High-dimensional adaptive sparse polynomial

interpolation and applications to parametric PDEs, 2012.

Set of reduced neighbors

N (Λ) := {ν /∈ Λ : ν − ej ∈ Λ,∀j ∈ Iν and νj = 0 , ∀j > j(Λ) + 1}

with j(Λ) = max{j : νj > 0 for some ν ∈ Λ}, Iν = {j ∈ N : νj 6= 0} ⊂ N
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Adaptive Construction of the Monotone Index Set

1: function ASG
2: Set Λ1 = {0} , k = 1 and compute ∆0(Θ).
3: Determine the set of reduced neighbors N (Λ1).
4: Compute ∆ν(Θ) , ∀ν ∈ N (Λ1).
5: while

∑
ν∈N (Λk)

|∆ν(Θ)| > tol do
6: Select ν ∈ N (Λk) with largest |∆ν | and set Λk+1 = Λk ∪ {ν}.
7: Determine the set of reduced neighbors N (Λk+1).
8: Compute ∆ν(Θ) ,∀ν ∈ N (Λk+1).
9: Set k = k + 1.

10: end while
11: end function

T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature, Computing, 2003
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Numerical Experiments

Model parametric parabolic problem

∂tq(t, x)− div(u(x)∇q(t, x)) = 100 · tx (t, x) ∈ T × D ,

q(0, x) = 0 x ∈ D ,

q(t, 0) = q(t, 1) = 0 t ∈ T

with

u(x, y) = 〈u〉+

64∑
j=1

yjψj ,where 〈u〉 = 1 and ψj = αjχDj

where Dj = [(j− 1) 1
64 , j

1
64 ], y = (yj)j=1,...,64 and αj = 0.9

jζ , ζ = 2, 3, 4.

Finite element method using continuous, piecewise linear ansatz functions in
space, backward Euler scheme in time

Uniform mesh with meshwidth hT = hD = 2−11

LAPACK’s DPTSV routine
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Numerical Experiments

Find the unknown data u for given (noisy) data δ,

δ = G(u) + η ,

Expectation of interest Z′/Z

Z′ =

∫
U

exp
(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=〈u〉+

∑64
j=1 yjψj

µ0(dy)

Z =

∫
U

exp
(
−Φ(u; δ)

)∣∣∣
u=〈u〉+

∑64
j=1 yjψj

µ0(dy)

Observation operator O consists of system responses at K observation points in T × D at
ti = i

2NK,T
, i = 1, . . . , 2NK,T − 1, xj = j

2NK,D
, k = 1, . . . , 2NK,D − 1, ok(·, ·) = δ(· − tk)δ(· − xk)

with K = 1, NK,D = 1,NK,T = 1, K = 3, NK,D = 2,NK,T = 1, K = 9, NK,D = 2,NK,T = 2

G : X → RK , with K = 1, 3, 9, φ(u) = G(u)

η = (ηj)j=1,...,K iid with ηj ∼ N (0, 1), ηj ∼ N (0, 0.52) and ηj ∼ N (0, 0.12)
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Numerical Experiments

Quadrature points
Clenshaw-Curtis (CC)

zk
j = −cos

(
πj

nk − 1

)
, j = 0, . . . , nk − 1, if nk > 1 and

zk
0 = 0 , if nk = 1

with n0 = 1 and nk = 2k + 1, for k ≥ 1

R-Leja sequence (RL)
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Numerical Experiments

Quadrature points
Clenshaw-Curtis (CC)

R-Leja sequence (RL)
projection on [−1, 1] of a Leja sequence for the complex unit disk initiated at i

zk
0 = 0 , zk

1 = 1 , zk
2 = −1 , if j = 0, 1, 2 and

zk
j = R(̂z), with ẑ = argmax

|z|≤1

j−1∏
l=1

|z− zk
l | , j = 3, . . . , nk, if j odd ,

zk
j = −zk

j−1 , j = 3, . . . , nk, if j even ,

with nk = 2 · k + 1, for k ≥ 0

J.-P. Calvi and M. Phung Van. On the Lebesgue constant of Leja sequences for the unit disk and
its applications to multivariate interpolation Journal of Approximation Theory, 2011.
J.-P. Calvi and M. Phung Van. Lagrange interpolation at real projections of Leja sequences for
the unit disk Proceedings of the American Mathematical Society, 2012.
A. Chkifa. On the Lebesgue constant of Leja sequences for the unit disk Journal of
Approximation Theory, 2013.
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Leja quadrature points

Proposition
Let QRL

Λ denote the sparse quadrature operator for any monotone set Λ based on the
univariate quadrature formulas associated with the R-Leja sequence.

If the forward solution map U 3 y 7→ q(y) is (p, ε)-analytic for some
0 < p < 1 and ε > 0, then (γν |θP

ν |)ν∈F ∈ lpm(F) and
(γν‖ψP

ν‖S)ν∈F ∈ lpm(F).

Furthermore, there exist two sequences (ΛRL,1
N )N≥1, (ΛRL,2

N ))N≥1 of
monotone index sets ΛRL,i

N ⊂ F such that #ΛRL,i
N ≤ N, i = 1, 2, and

such that, for some C1,C2 > 0 independent of N, with s = 1
p − 1,

|I[Θ]−Q
ΛRL,1

N
[Θ]| ≤ C1N−s ,

and ‖I[Ψ]−Q
ΛRL,2

N
[Ψ[‖S ≤ C2N−s .
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Leja quadrature points
Sketch of proof

Univariate polynomial interpolation operator

Ik
RL(g) =

nk∑
i=0

g
(
zk

i
)
· lki ,

with g : U 7→ S, lk
i (y) :=

∏nk
i=0,i 6=j

y−zi
zj−zi

the Lagrange polynomials.

(I − Qk
RL)(gk) = (I − I[Ik

RL])(gk) = I(gk − Ik
RL(gk)) = 0

∀gk ∈ Pk = span{yj : j ∈ N0, j ≤ k}.
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Leja quadrature points
Sketch of proof

Univariate polynomial interpolation operator

Ik
RL(g) =

nk∑
i=0

g
(
zk

i
)
· lki ,

with g : U 7→ S, lk
i (y) :=

∏nk
i=0,i 6=j

y−zi
zj−zi

the Lagrange polynomials.

(I − Qk
RL)(gk) = 0 , ∀gk ∈ Pk

|||Qk
RL||| = sup

06=g∈C(U;S)

‖Qk
RL(g)‖S

‖g‖L∞(U;S)

≤ sup
06=g∈C(U;S)

‖Ik
RL(g)‖L∞(U;S)

‖g‖L∞(U;S)
≤ 3(k + 1)2 log(k + 1)
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Leja quadrature points
Sketch of proof

Univariate polynomial interpolation operator

Ik
RL(g) =

nk∑
i=0

g
(
zk

i
)
· lki ,

with g : U 7→ S, lk
i (y) :=

∏nk
i=0,i 6=j

y−zi
zj−zi

the Lagrange polynomials.

(I − Qk
RL)(gk) = 0 , ∀gk ∈ Pk

|||Qk
RL||| ≤ 3(k + 1)2 log(k + 1)

Relating the quadrature error with the Legendre coefficients θP
ν of g
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2
(l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.52) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence CC with with K = 1, 3, 9, η ∼ N (0, 0.12) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2
(l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.

C. Schillings (SAM) Sparsity in Bayesian Inversion Pro*Doc - August 15, 2013 18 / 24



Normalization Constant Z

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u

p
re

m
u

m
 e

rr
o

r

# Λ

Z, ζ=2, η
j
∼ N(0,0.5

2
)

 

 

Estimated error, N
K
=2 RL

Estimated error, N
K
=3 RL

Estimated error, N
K
=4 RL

Error (ref. sol.), N
K
=2 RL

Error (ref. sol.), N
K
=3 RL

Error (ref. sol.), N
K
=4 RL

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u

p
re

m
u

m
 e

rr
o

r

# Λ

Z, ζ=3, η
j
∼ N(0,0.5

2
)

 

 

Estimated error, N
K
=2 RL

Estimated error, N
K
=3 RL

Estimated error, N
K
=4 RL

Error (ref. sol.), N
K
=2 RL

Error (ref. sol.), N
K
=3 RL

Error (ref. sol.), N
K
=4 RL

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u

p
re

m
u

m
 e

rr
o

r

# Λ

Z, ζ=4, η
j
∼ N(0,0.5

2
)

 

 

Estimated error, N
K
=2 RL

Estimated error, N
K
=3 RL

Estimated error, N
K
=4 RL

Error (ref. sol.), N
K
=2 RL

Error (ref. sol.), N
K
=3 RL

Error (ref. sol.), N
K
=4 RL

Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.52) and with ζ = 2
(l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2
(l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.), ζ = 3 (m.)
and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.52) and with ζ = 2 (l.), ζ = 3
(m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed
solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2 (l.), ζ = 3
(m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed
solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.), ζ = 3 (m.)
and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed solution.
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.52) and with ζ = 2 (l.), ζ = 3
(m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed
solution.
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Quantity Z′
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2 (l.), ζ = 3
(m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed
solution.
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Numerical Experiments

Model parametric parabolic problem

∂tq(t, x)− div(u(x)∇q(t, x)) = 100 · tx (t, x) ∈ T × D ,

q(0, x) = 0 x ∈ D ,

q(t, 0) = q(t, 1) = 0 t ∈ T

with

u(x, y) = 〈u〉+

128∑
j=1

yjψj ,where 〈u〉 = 1 and ψj = αjχDj

where Dj = [(j− 1) 1
128 , j

1
128 ], y = (yj)j=1,...,128 and αj = 0.6

jζ , ζ = 2, 3, 4.

Finite element method using continuous, piecewise linear ansatz functions in
space, backward Euler scheme in time

Uniform mesh with meshwidth hT = hD = 2−11

LAPACK’s DPTSV routine
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Normalization Constant Z (128 parameters)
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2
(l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Normalization Constant Z (128 parameters)
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.52) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Normalization Constant Z (128 parameters)
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively
computed solution.
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Quantity Z′ (128 parameters)

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u

p
re

m
u

m
 e

rr
o

r

# Λ

Z’, ζ=2, η
j
∼ N(0,1)

 

 

Estimated error, N
K
=2 CC

Estimated error, N
K
=3 CC

Estimated error, N
K
=4 CC

Error (ref. sol.), N
K
=2 CC

Error (ref. sol.), N
K
=3 CC

Error (ref. sol.), N
K
=4 CC

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u

p
re

m
u

m
 e

rr
o

r

# Λ

Z’, ζ=3, η
j
∼ N(0,1)

 

 

Estimated error, N
K
=2 CC

Estimated error, N
K
=3 CC

Estimated error, N
K
=4 CC

Error (ref. sol.), N
K
=2 CC

Error (ref. sol.), N
K
=3 CC

Error (ref. sol.), N
K
=4 CC

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u

p
re

m
u

m
 e

rr
o

r

# Λ

Z’, ζ=4, η
j
∼ N(0,1)

 

 

Estimated error, N
K
=2 CC

Estimated error, N
K
=3 CC

Estimated error, N
K
=4 CC

Error (ref. sol.), N
K
=2 CC

Error (ref. sol.), N
K
=3 CC

Error (ref. sol.), N
K
=4 CC

Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.), ζ = 3 (m.)
and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed solution.
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Quantity Z′ (128 parameters)
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.52) and with ζ = 2 (l.), ζ = 3
(m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed
solution.
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Quantity Z′ (128 parameters)
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the cardinality of the index set ΛN

based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2 (l.), ζ = 3
(m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the adaptively computed
solution.

C. Schillings (SAM) Sparsity in Bayesian Inversion Pro*Doc - August 15, 2013 22 / 24



Conclusions and Outlook

New class of sparse, adaptive quadrature methods for Bayesian
inverse problems for a broad class of operator equations

Dimension-independent convergence rates depending only on the
summability of the parametric operator

Numerical confirmation of the predicted convergence rates
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Conclusions and Outlook

New class of sparse, adaptive quadrature methods for Bayesian
inverse problems for a broad class of operator equations

Dimension-independent convergence rates depending only on the
summability of the parametric operator

Numerical confirmation of the predicted convergence rates

Gaussian priors and lognormal coefficients

Adaptive control of the discretization error of the forward problem
with respect to the expected significance of its contribution to the
Bayesian estimate

Efficient treatment of large sets of data δ
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