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Motivation

Aim: to investigate

defects in
fabrication process

L9999K optical response
of nano structures

How to perform uncertainty quantification?

not ’small’ stochastic variations of the domain:
perturbative method

low convergence rate of Monte Carlo sampling

⇒ deterministic uncertainty quantification

Quantities of interest:
statistics (mean, variance, ...) of solution / linear output functionals.
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Outline
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Model problem

plane wave interacting with a scatterer
TE / TM symmetry

}
⇒ 2d Helmholtz equation

Γscatt = Γscatt(ω), ω ∈ Ω ⇒ u = u(ω)


−∆u− k2

1u = 0 in Dfree(ω) ∪ DPML

−∆u− k2
2u = 0 in Dscatt(ω)
JuK = 0 on Γscatt(ω)

∂u

∂n

∣∣∣∣
out

− µd
∂u

∂n
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in

= 0 on Γscatt(ω)

with
µd =

εscatt

εfree

for TE case,

µd =
µscatt

µfree

= 1 for TM case.

Incident plane wave from the left: ui(x) = eik1x.
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Domain parametrization

Assumption: star-shaped scatterer.
⇒ to each angle ϕ ∈ [0, 2π), associate a stochastic radius:

0 < ρmin ≤ ρ(ω, ϕ) ≤ ρmax, ω ∈ Ω

Problem: How to discretize the probability space Ω?

Parametrization of Ω:

ρ(ω, ϕ) = ρ̄(ϕ) +
∑
k≥1

ckY2k(ω) cos(kϕ) + skY2k+1(ω) sin(kϕ)

Yl : Ω→ Γl real-valued random variables, i.i.d.

• Parameter space: Γ = Xl∈NΓl

• Define Y : Ω→ Γ as Y = (Yl)l∈N

• D(ω) replaced by D(y), y = Y(ω) ∈ Γ

Assumption: Yl ∼ U [−1, 1]⇒ Γ = [−1, 1]∞
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Mapping approach (1)

The variational formulation for the model problem is:

with:

D(y) = Dscatt(y)∪Dfree(y)

µ =

{
µd inDscatt

1 inDfree

k =

{
µdk

2
2 inDscatt

k2
1 inDfree
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Mapping approach (2)

Variational formulation after the mapping:

with D̃ = D̃scatt ∪ D̃free and

a1(y) = µ (DΦ−1)(DΦ−T ) |detDΦ| , a2(y) = k2 |detDΦ|

f(y) =
∂̃ui

∂̃n
|detDΦ|
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Regularity of the solution

Regularity in the physical space (P -a.e. y ∈ Γ)

Notation: ρK(y, ϕ) = ρ̄(ϕ) +

K∑
k=1

cky2k cos(kϕ) + sky2k+1 sin(kϕ)

(ck)k, (sk)k ∈ lp(N)⇒ ρK ∈ Cs
per([0, 2π]) uniformly in K,

with s→∞ as p ↓ 0

⇒ ΦK(y), ΦK(y)−1 ∈ Cs
per,

⇒ a1(y), a2(y), f(y) ∈ Cs−1
per

⇒ u(y) ∈ Hs+1

Remark: if Karhunen-Loève expansion for ρ:
smoothness of ρ←→ smoothness of covariance kernel

Regularity in the parameter space
Conjecture: analytic dependence of u on y ∈ Γ
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Discretization

Two discretizations are needed:

discretization of the parameter space Γ: stochastic collocation
(nonintrusive)

discretization of the physical reference domain: finite element
discretization

uΛ,L(y) =
∑
ν∈Λ

uν,LLν(y)

generalized Lagrange polynomials

choose a finite subset Λ of indices ↔ of collocation points yν ∈ Γ

for each collocation point yν , compute the FE solution to the PDE
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Stochastic collocation: sparse adaptive Smolyak
algorithm (1)

Aim: choose the index set for collocation points

Λ ⊂ F =
{
ν ∈ NN

0 : ]suppν <∞
}

in order to achieve an optimal convergence rate for moments of the
solution u = u(y)

⇒ quadrature rule on Γ.

Strategy:

1 start from Λ = {0}
2 consider ’neighborhood’ N (Λ)

3 choose the index in N (Λ) with highest estimated error contribution

4 update Λ and repeat 2 and 3 iteratively
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Stochastic collocation: sparse adaptive Smolyak
algorithm (2)

Definitions:

univariate quadrature operator:

univariate quadrature difference
operator:

for ν ∈ F , tensorized multivariate
operators (inductively defined):

sparse quadrature operator:

Qk(u) =

nk∑
i=0

wki · u(yki )

∆j = Qj −Qj−1

⇒ Qk =

k∑
j=0

∆k

Qν =
⊗
j≥1

Qνj ∆ν =
⊗
j≥1

∆νj

QΛ =
∑
ν∈Λ

∆ν

Deterministic uncertainty quantification in Nano Optics 11/20



Stochastic collocation: sparse adaptive Smolyak
algorithm (2)
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Stochastic collocation: sparse adaptive Smolyak
algorithm (3)

Convergence of adaptive Smolyak algorithm:

If the solution to the PDE depends analytically on y

⇓
convergence weights depend only on the sparsity class1 of the unknown,

not on the number of dimensions activated [Schillings,Schwab 2012]

(dimension-robust algorithm)

1sparsity class = decay of Taylor coefficients
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Numerical results: physical setting (TM case)

Total field, real part Total field, absolute value
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Numerical results: stochastic outputs comparison

Deterministic case:
sk, ck = 0 ∀k ≥ 1

Stochastic case:
s1 6= 0
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Numerical results: convergence (1)

Quantity considered: total field point value in the center of the scatterer.
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Numerical results: convergence (2)

Quantity considered: total field point value in far field region.
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Numerical results: convergence (3)

Quantity considered: far field Fourier coefficients.

⇒ Multilevel strategy:
for each collocation point, FE discretization capable to resolve
the oscillations in the parameter-dependent coefficients.
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Ongoing work: particle on a substrate

Half-circular scatterer Rectangular scatterer
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Conclusions

parametrization of the shape using an angle-dependent stochastic
radius can be used to describe a wide range of domains;

the sparse adaptive Smolyak algorithm produced promising
preliminary results;

proof of analyticity of the solution with respect to y is crucial to
apply the theoretical convergence results;

a multilevel approach (FE space - collocation point coupling) is
important to improve the convergence and reduce the computational
effort.
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