Numerical Approximation of Parabolic Equations with Singular Data

Denis Devaud ${ }^{1}$, Christoph Schwab
ETH Zürich, Seminar for Applied Mathematics
August 17-19, 2015, Disentis Retreat

EH
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Seminar for Applied Mathematics

Motivation

- Numerical optimal control;
- Fluid-structure interaction (immersed boundary method [6]);
- $F(\mathbf{x}, t)=\int_{D_{0}(t)} f(\mathbf{s}, t) \delta(\mathbf{x}-\mathbf{s}) d s$, with $D_{0}(t) \subsetneq D$ and $D_{0}(t) \cap \partial D=\emptyset \forall t$;

Question: What happens in the case $D_{0}(t)=\{\mathbf{x}(t)\}$?

Parabolic equations - General setting

- $V \subset H$ Hilbert spaces with dense continuous embedding;
- $D \subset \mathbb{R}^{2}$ bounded convex polygonal domain;
- self-adjoint operator $A \in \mathcal{L}\left(V, V^{*}\right)$ s.t. the associated bilinear form $a(u, v)=\langle A u, v\rangle$ satisfies

$$
\begin{align*}
a(u, v) \leq \lambda_{+}\|u\|_{v}\|v\|_{v,}, & \forall u, v \in V \tag{1}\\
a(v, v) \geq \lambda_{-}\|v\|_{V}^{2}, & \forall v \in V . \tag{2}
\end{align*}
$$

- Find $u \in \mathcal{J}_{+}$satisfying (in the weak sense)

$$
\begin{align*}
B u:=\partial_{t} u+A u & =f, \quad \text { in } I_{>}=(0, T), \tag{3}\\
u(0) & =0 . \tag{4}
\end{align*}
$$

In particular: For $X \in C^{1}(0, T ; D)$ and $c \in H^{1}(0, T)$, we consider

$$
f=c(t) \delta_{X(t)}
$$

where $\delta_{X(t)}$ is the Dirac measure centered at $X(t)$.

Sobolev spaces

Definition

(i) $H^{1 / 2}\left(\mathbb{R}_{+} ; H\right)$ as the set of functions $u \in L^{2}\left(\mathbb{R}_{+} ; H\right)$ such that

$$
\|u\|_{H^{1 / 2}\left(\mathbb{R}_{+} ; H\right)}^{2}:=\|u\|_{L^{2}\left(\mathbb{R}_{+} ; H\right)}^{2}+\int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{+}} \frac{\|u(s)-u(t)\|_{H}^{2}}{|s-t|^{2}} d s d t<\infty ;
$$

(ii) $H_{0}^{1 / 2}\left(\mathbb{R}_{+} ; H\right)$ as the set of functions $u \in H^{1 / 2}\left(\mathbb{R}_{+} ; H\right)$ such that

$$
\|u\|_{H_{0}^{1 / 2}\left(\mathbb{R}_{+} ; H\right)}^{2}:=\|u\|_{H^{1 / 2}\left(\mathbb{R}_{+} ; H\right)}^{2}+\int_{\mathbb{R}_{+}} \frac{\|u(s)\|_{H}^{2}}{s} d s<\infty .
$$

Remark: Equivalent to interpolation spaces [5].

Definition

For a subspace $\mathcal{V} \subset V$, we define

$$
\begin{aligned}
\mathcal{J}_{+, 0} & :=H_{0}^{1 / 2}\left(\mathbb{R}_{+} ; H\right) \cap L^{2}\left(\mathbb{R}_{+} ; \mathcal{V}\right) \\
\mathcal{J}_{+} & :=H^{1 / 2}\left(\mathbb{R}_{+} ; H\right) \cap L^{2}\left(\mathbb{R}_{+} ; \mathcal{V}\right)
\end{aligned}
$$

Weak formulation

We define

$$
b_{+}(u, v):=\langle D u, v\rangle+\int_{\mathbb{R}_{+}} a(u, v) d t, \quad \forall u \in \mathcal{J}_{+, 0}, v \in \mathcal{J}_{+}
$$

where (for smooth functions)

$$
\langle D u, v\rangle=-\int_{\mathbb{R}_{+}}(u(t), D v(t))_{H} d t
$$

Theorem (Fontes [4])

Given $f \in \mathcal{J}_{+}^{*}$, there exists a unique $u \in \mathcal{J}_{+, 0}$ such that

$$
\begin{equation*}
b_{+}(u, v)=\langle f, v\rangle, \quad \forall v \in \mathcal{J}_{+} \tag{5}
\end{equation*}
$$

Moreover, there exists $C>0$ such that $\|u\|_{\mathcal{J}_{+, 0}} \leq C\|f\|_{\mathcal{J}_{+}^{*}}$.
We have $\mathcal{J}_{+}^{*} \simeq\left\{g \in H^{-1 / 2}(\mathbb{R} ; H)+L^{2}\left(\mathbb{R} ; \mathcal{V}^{*}\right) \mid \operatorname{supp}(g) \subset \mathbb{R}_{+}\right\}$.
Note: if $\mathcal{V}=V$, we obtain well-posedness of the original problem.

Increased regularity

For $A \in \mathcal{L}\left(V, V^{*}\right)$, we define

$$
D(A):=\{v \in V \mid A v \in H\} .
$$

Reminder: We assume that A is a self-adjoint operator associated to a coercive and continuous bilinear form.

Theorem

If $f \in H^{1}\left(\mathbb{R}_{+} ; H\right)$, it holds $u \in H^{2}\left(\mathbb{R}_{+} ; H\right) \cap H_{0}^{1}\left(\mathbb{R}_{+} ; D(A)\right)$ and there exists $C>0$ such that

$$
\|u\|_{H^{2}\left(\mathbb{R}_{+} ; H\right) \cap H_{0}^{1}\left(\mathbb{R}_{+} ; D(A)\right)} \leq C\|f\|_{H^{1}\left(\mathbb{R}_{+} ; H\right)}
$$

Proof: Similar to the one presented in Evans [3].

Discretization

- Assume $\mathcal{V}=\mathcal{V}_{h}$ is finite dimensional;
- Semidiscrete problem (space approximation): find $u_{h} \in X_{h}:=H_{0}^{1 / 2}\left(\mathbb{R}_{+} ; H\right) \cap L^{2}\left(\mathbb{R}_{+} ; \mathcal{V}_{h}\right)$ such that

$$
\begin{equation*}
\left\langle D u_{h}, v_{h}\right\rangle+\int_{\mathbb{R}_{+}} a\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle, \quad \forall v \in Y_{h}, \tag{6}
\end{equation*}
$$

where $Y_{h}:=H^{1 / 2}\left(\mathbb{R}_{+} ; H\right) \cap L^{2}\left(\mathbb{R}_{+} ; \mathcal{V}_{h}\right)$.

- Time stepping: For a time step Δt and $\theta \in[0,1]$, we set $u_{0}=0$ and consider

$$
\begin{equation*}
\left(u_{j+1}-u_{j}, v_{h}\right)_{H}+\Delta \operatorname{ta}\left(u_{j}^{\theta}, v_{h}\right)=\Delta t\left\langle f_{j}^{\theta}, v_{h}\right\rangle, \quad \forall v_{h} \in \mathcal{V}_{h}, j \in \mathbb{N} \tag{7}
\end{equation*}
$$

where $u_{j}^{\theta}=\theta u_{j+1}+(1-\theta) u_{j}$ and $f_{j} \approx f(j \Delta t)$.

Analysis of the time discretization - Operators

For $\mu \in L^{2}\left(\mathbb{R}_{+} ; H\right)$, we define:

- Prolongation operator $\pi_{\Delta t}^{\mu}: \ell^{2}(H) \rightarrow L^{2}\left(\mathbb{R}_{+} ; H\right)$:

$$
\pi_{\Delta t}^{\mu} \mathbf{g}(t):=\sum_{i \in \mathbb{N}} g_{i} \mu\left(\frac{t}{\Delta t}-i\right), \quad t \in \mathbb{R}_{+}, \mathbf{g} \in \ell^{2}(H)
$$

- Restriction operator $\rho_{\Delta t}^{\mu}: L^{2}\left(\mathbb{R}_{+} ; H\right) \rightarrow \ell^{2}(H)$

$$
\left(\rho_{\Delta t}^{\mu} g\right)_{i}:=\frac{1}{\Delta t} \int_{\mathbb{R}_{+}} g(t) \mu\left(\frac{t}{\Delta t}-i\right) d t, \quad i \in \mathbb{N}, g \in L^{2}\left(\mathbb{R}_{+} ; H\right)
$$

- In particular $\pi_{0}:=\pi_{\Delta t}^{\psi_{0}}$ and $\pi_{1}:=\pi_{\Delta t}^{\psi_{1}}($ same for $\rho)$ for

$$
\begin{aligned}
& \psi_{0}(t):=\chi_{[0,1)}(t) \\
& \psi_{1}(t):=\left\{\begin{array}{cl}
1+t & \text { if }-1 \leq t \leq 0 \\
1-t & \text { if } 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Goal: Obtain stability and convergence results in the \mathcal{J}_{+}-norm.

Analysis of the time discretization - Stability

Proposition

- $\theta \geq 1 / 2$: assume $\left\|\pi_{0} \mathbf{f}\right\|_{\mathcal{J}_{+}^{*}}<\infty$. Then there exists a constant $C=C\left(\lambda_{-}, \lambda_{+}\right)>0$ such that

$$
\left\|\pi_{1} \mathbf{u}^{\theta}\right\|_{\mathcal{J}_{+}} \leq C\left\|\pi_{0} \mathbf{f}\right\|_{\mathcal{J}_{+}^{*}}
$$

Moreover, if $\theta \neq 1 / 2$, there holds

$$
(2 \theta-1)\left\|\pi_{1} \mathbf{u}\right\|_{\mathcal{J}_{+, 0}} \leq C\left\|\pi_{0} \mathbf{f}\right\|_{\mathcal{J}_{+}^{*}} .
$$

- $\theta<1 / 2$: assume that $\left\|\pi_{0} \mathbf{f}\right\|_{L^{2}\left(\mathbb{R}_{+} ; V^{*}\right)}<\infty$ and

$$
\begin{equation*}
\left\|v_{h}\right\|_{V} \leq C_{i n v} h^{-1}\left\|v_{h}\right\|_{H}, \Delta t<\frac{h^{2} \lambda_{-}}{C_{i n v}^{2}(1-2 \theta) \lambda_{+}^{2}} \tag{8}
\end{equation*}
$$

Then there exists $C=C\left(\lambda_{-}, \lambda_{+}\right)>0$ such that

$$
(1-2 \theta)\left\|\pi_{1} \mathbf{u}\right\|_{\mathcal{J}_{+, 0}} \leq C\left\|\pi_{0} \mathbf{f}\right\|_{L^{2}\left(\mathbb{R}_{+} ; V^{*}\right)}
$$

Analysis of the time discretization - Convergence

We define:

$$
\begin{aligned}
\mathcal{J}_{+}^{1,0} & :=H^{2}\left(\mathbb{R}_{+} ; H\right) \cap H_{0}^{1}\left(\mathbb{R}_{+} ; V\right) \\
\mathcal{S}_{+}^{1,0} & :=H^{1}\left(\mathbb{R}_{+} ; V^{*}\right)
\end{aligned}
$$

Theorem

Let $\theta \in[0,1], f \in \mathcal{J}_{+}^{*}$ and set $\mathbf{f}=\rho_{1} f$. Assume that $u_{h} \in \mathcal{J}_{+}^{1,0}$ and $f \in \mathcal{S}_{+}^{1,0}$ and if $\theta<1 / 2$, assume moreover that the CFL and inverse conditions (8) hold. Then there exists $C>0$ such that

$$
\begin{equation*}
\left\|u_{h}-\pi_{1} \mathbf{u}^{\theta}\right\|_{\mathcal{J}_{+}} \leq C \Delta t\left(\left\|u_{h}\right\|_{\mathcal{J}_{+}^{1,0}}+\|f\|_{\mathcal{S}_{+}^{1,0}}\right) \tag{9}
\end{equation*}
$$

Moreover, for $\theta \neq 1 / 2$, there holds

$$
\begin{equation*}
|2 \theta-1|\left\|u_{h}-\pi_{1} \mathbf{u}\right\|_{\mathcal{J}_{+}} \leq C \Delta t\left(\left\|u_{h}\right\|_{\mathcal{J}_{+}^{1,0}}+\|f\|_{\mathcal{S}_{+}^{1,0}}\right) . \tag{10}
\end{equation*}
$$

Proof: Based on Baiocchi \& Brezzi [1], which prove the previous results on \mathbb{R}.

Analysis of the space discretization - A special setting

Setting:

- $A v=-\operatorname{div}(\mathcal{A}(x) \nabla v)$ for a symmetric matrix $\mathcal{A} \in\left(W^{1, \infty}(D)\right)^{2 \times 2}$ such that there exists $\lambda_{-}>0$ satisfying

$$
\sum_{i, j=1}^{2} \mathcal{A}_{i, j}(x) \xi_{i} \xi_{j} \geq \lambda_{-}|\xi|^{2}, \quad \forall x \in D
$$

- $H:=L^{2}(D), V:=H_{0}^{1}(D)$, where $D \subset \mathbb{R}^{2}$ is a bounded convex polygonal domain;
- for an admissible shape regular mesh \mathcal{T}_{h} :

$$
\mathcal{V}:=\mathcal{V}_{h}\left(\mathcal{T}_{h}\right):=\left\{v \in C^{0}(D)|v|_{T} \in \mathbb{P}^{1}(T), \quad T \in \mathcal{T}_{h}\right\}
$$

where $\mathbb{P}^{1}(T)$ is the set of polynomials of degree at most 1 on $T \in \mathcal{T}_{h}$;
Remark: In that setting, the inverse condition $\left\|v_{h}\right\|_{H_{0}^{1}(D)} \leq C_{i n v} h^{-1}\left\|v_{h}\right\|_{L^{2}(D)}$ holds.

Analysis of the space discretization - A special setting

Regularity:

Lemma

In the previous setting, we have that $D(A)=H^{2}(D) \cap H_{0}^{1}(D)$.
It follows $f \in H^{1}\left(\mathbb{R}_{+} ; L^{2}(D)\right) \Rightarrow u \in H^{2}\left(\mathbb{R}_{+} ; L^{2}(D)\right) \cap H_{0}^{1}\left(\mathbb{R}_{+} ; H^{2}(D) \cap H_{0}^{1}(D)\right)$. Convergence:
We define

$$
\mathcal{J}_{+, 0}^{0,1}:=H_{0}^{1 / 2}\left(\mathbb{R}_{+} ; H_{0}^{1}(D)\right) \cap L^{2}\left(\mathbb{R}_{+} ; H_{0}^{1}(D) \cap H^{2}(D)\right)
$$

Theorem

There exists $C>0$ such that if $u \in \mathcal{J}_{+, 0}^{0,1}$, there holds

$$
\left\|u-u_{h}\right\|_{\mathcal{J}_{+, 0}} \leq C h\|u\|_{\mathcal{J}_{+, 0}^{0,1}}
$$

Convergence of the space-time discretization

Wrapping up everything, we obtain the main convergence result:

Theorem

Let $\theta \in[0,1], f \in H^{1}\left(\mathbb{R}_{+} ; L^{2}(D)\right)$ and set $\mathbf{f}=\rho_{1} f$. If $\theta<1 / 2$, assume moreover that the CFL condition (8) holds. Then there exists $C>0$ such that

$$
\left\|u-\pi_{1} \mathbf{u}^{\theta}\right\|_{\mathcal{J}_{+}} \leq C(h+\Delta t)\|f\|_{H^{1}\left(\mathbb{R}_{+} ; L^{2}(D)\right)} .
$$

Moreover if $\theta \neq 1 / 2$, there holds

$$
\left\|u-\pi_{1} \mathbf{u}\right\|_{\mathcal{J}_{+}} \leq \frac{C}{|2 \theta-1|}(h+\Delta t)\|f\|_{H^{1}\left(\mathbb{R}_{+} ; L^{2}(D)\right)}
$$

Reminder: $\mathcal{J}_{+}=H^{1 / 2}\left(\mathbb{R}_{+} ; L^{2}(D)\right) \cap L^{2}\left(\mathbb{R}_{+} ; H_{0}^{1}(D)\right)$.
Remark: The ingredients to get this result are:

- The convergence results for the space and time discretizations;
- The regularity result stated above.

Moving point source - Regularization

We consider

$$
\begin{aligned}
B u:=\partial_{t} u+A u & =f, \quad \text { in } I_{>}=(0, T) \\
u(0) & =0,
\end{aligned}
$$

for

$$
f=c(t) \delta_{X(t)} \text {. }
$$

Problem: For any $t \in \mathbb{R}_{+}$, we have $\delta_{X(t)} \notin H^{-1}(D)$ (Sobolev's embedding). Idea: Regularize in space: for $\varepsilon>0$, consider

$$
f_{\varepsilon}(t):=\frac{1}{\mu\left(D_{t, \varepsilon}\right)} c(t) \chi_{D_{t, \varepsilon}}
$$

where $\chi_{D_{t, \varepsilon}}$ is the characteristic function over

$$
D_{t, \varepsilon}:=\left\{\left(X_{1}(t)+r \cos (\theta), X_{2}(t)+r \sin (\theta)\right) \mid r \in\left[0, r_{\varepsilon}(\theta)\right], \theta \in[0,2 \pi]\right\}
$$

assuming $c_{1} \varepsilon<r_{\varepsilon}(\theta)<c_{2} \varepsilon$ for some constants $c_{1}, c_{2}>0$.

Moving point source - Convergence

We denote:

- u_{ε} as the solution of (5) for $f=f_{\varepsilon}$;
- \mathbf{u}_{ε} as the solution of (7) for $\mathbf{f}=\rho_{1} f_{\varepsilon}$;

It follows that for $\theta \in[0,1]$ (under the CFL condition for $\theta<1 / 2$)

$$
\left\|u_{\varepsilon}-\pi_{1} \mathbf{u}_{\varepsilon}^{\theta}\right\|_{\mathcal{J}_{+}} \leq C(h+\Delta t)\|f\|_{H^{1}\left(\mathbb{R}_{+} ; L^{2}(D)\right)} \approx \frac{C}{\varepsilon}(h+\Delta t)
$$

If $\theta \neq 1 / 2$:

$$
\left\|u_{\varepsilon}-\pi_{1} \mathbf{u}_{\varepsilon}\right\|_{\mathcal{J}_{+}} \leq C(h+\Delta t)\|f\|_{H^{1}\left(\mathbb{R}_{+} ; L^{2}(D)\right)} \approx \frac{C(\theta)}{\varepsilon}(h+\Delta t)
$$

with $C(\theta) \rightarrow \infty$ as $\theta \rightarrow 1 / 2$.

Moving point source - A qualitative example

- $D=[-1,1]^{2}, T=0.5$;
- $\varepsilon=10^{-2}$;
- $\Delta t=5 \cdot 10^{-4}, h \approx 8 \cdot 10^{-3}, \theta=1$;

Computations performed with the C++ library deal.II [2]

Next steps

- We can show that $\left\|\frac{1}{\mu\left(D_{t, \varepsilon}\right)} \chi_{D_{t, \varepsilon}}\right\|_{H^{-1}(D)} \approx \sqrt{|\log (\varepsilon)|} \Rightarrow$ derive bounds for the $L^{2}\left(\mathbb{R}_{+} ; L^{2}(D)\right)$-norm with respect to the $H^{1}\left(\mathbb{R}_{+} ; H^{-1}(D)\right)$-norm of the right-hand side;
- Computational results;
- Other equations;
- 3D problems;
- Uncertain data.

References

泀
C．Baiocchi and F．Brezzi，Optimal error estimates for linear parabolic problems under minimal regularity assumptions，Calcolo， 20 （1983）， pp．143－176（1984）．

宣
W．Bangerth，T．Heister，L．Heltai，G．Kanschat，
M．Kronbichler，M．Maier，B．Turcksin，and T．D．Young，The deal．II library，version 8．3，Archive of Numerical Software， 3 （2015）．

宣
L．C．Evans，Partial differential equations，vol． 19 of Graduate Studies in Mathematics，American Mathematical Society，Providence，RI，second ed．， 2010.
－M．Fontes，Initial－boundary value problems for parabolic equations，Ann． Acad．Sci．Fenn．Math．， 34 （2009），pp．583－605．
T．J．－L．Lions and E．Magenes，Problèmes aux limites non homogènes et applications．Vol．1，Travaux et Recherches Mathématiques，No．17， Dunod，Paris， 1968.
圊
C．S．Peskin，The immersed boundary method，Acta Numer．， 11 （2002）， pp．479－517．

Questions?

