
Numerical Approximation of Parabolic
Equations with Singular Data

Denis Devaud1, Christoph Schwab
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Motivation

Numerical optimal control;

Fluid-structure interaction (immersed boundary method [6]);

F (x, t) =
∫
D0(t)

f (s, t)δ(x− s)ds, with D0(t) ( D and D0(t) ∩ ∂D = ∅ ∀t;

Question: What happens in the case D0(t) = {x(t)}?
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Parabolic equations - General setting

V ⊂ H Hilbert spaces with dense continuous embedding;

D ⊂ R2 bounded convex polygonal domain;

self-adjoint operator A ∈ L(V ,V ∗) s.t. the associated bilinear form
a(u, v) = 〈Au, v〉 satisfies

a(u, v) ≤ λ+‖u‖V ‖v‖V , ∀u, v ∈ V , (1)

a(v , v) ≥ λ−‖v‖2
V , ∀v ∈ V . (2)

Find u ∈ J+ satisfying (in the weak sense)

Bu := ∂tu + Au =f , in I> = (0,T ), (3)

u(0) =0. (4)

In particular: For X ∈ C 1(0,T ; D) and c ∈ H1(0,T ), we consider

f = c(t)δX (t),

where δX (t) is the Dirac measure centered at X (t).



Introduction Parabolic equations Numerical Approximation Moving Point Source References

Sobolev spaces

Definition

(i) H1/2(R+; H) as the set of functions u ∈ L2(R+; H) such that

‖u‖2
H1/2(R+;H) := ‖u‖2

L2(R+;H) +

∫
R+

∫
R+

‖u(s)− u(t)‖2
H

|s − t|2
dsdt <∞;

(ii) H
1/2
0 (R+; H) as the set of functions u ∈ H1/2(R+; H) such that

‖u‖2

H
1/2
0 (R+;H)

:= ‖u‖2
H1/2(R+;H) +

∫
R+

‖u(s)‖2
H

s
ds <∞.

Remark: Equivalent to interpolation spaces [5].

Definition

For a subspace V ⊂ V , we define

J+,0 :=H
1/2
0 (R+; H) ∩ L2(R+;V),

J+ :=H1/2(R+; H) ∩ L2(R+;V).
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Weak formulation

We define

b+(u, v) := 〈Du, v〉+

∫
R+

a(u, v)dt, ∀u ∈ J+,0, v ∈ J+,

where (for smooth functions)

〈Du, v〉 = −
∫
R+

(u(t),Dv(t))H dt.

Theorem (Fontes [4])

Given f ∈ J ∗+ , there exists a unique u ∈ J+,0 such that

b+(u, v) = 〈f , v〉 , ∀v ∈ J+. (5)

Moreover, there exists C > 0 such that ‖u‖J+,0
≤ C ‖f ‖J ∗

+
.

We have J ∗+ '
{

g ∈ H−1/2(R; H) + L2(R;V∗)
∣∣∣ supp (g) ⊂ R+

}
.

Note: if V = V , we obtain well-posedness of the original problem.
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Increased regularity

For A ∈ L(V ,V ∗), we define

D(A) := {v ∈ V | Av ∈ H} .

Reminder: We assume that A is a self-adjoint operator associated to a
coercive and continuous bilinear form.

Theorem

If f ∈ H1(R+; H), it holds u ∈ H2(R+; H) ∩ H1
0 (R+; D(A)) and there exists

C > 0 such that

‖u‖H2(R+;H)∩H1
0 (R+;D(A)) ≤ C ‖f ‖H1(R+;H) .

Proof: Similar to the one presented in Evans [3].
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Discretization

Assume V = Vh is finite dimensional;

Semidiscrete problem (space approximation): find

uh ∈ Xh := H
1/2
0 (R+; H) ∩ L2(R+;Vh) such that

〈Duh, vh〉+

∫
R+

a(uh, vh) = 〈f , vh〉, ∀v ∈ Yh, (6)

where Yh := H1/2(R+; H) ∩ L2(R+;Vh).

Time stepping: For a time step ∆t and θ ∈ [0, 1], we set u0 = 0 and
consider

(uj+1 − uj , vh)H + ∆ta(uθj , vh) = ∆t
〈

f θj , vh
〉
, ∀vh ∈ Vh, j ∈ N, (7)

where uθj = θuj+1 + (1− θ)uj and fj ≈ f (j∆t).
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Analysis of the time discretization - Operators

For µ ∈ L2(R+; H), we define:

Prolongation operator πµ∆t : `2(H)→ L2(R+; H):

πµ∆tg(t) :=
∑
i∈N

giµ
( t

∆t
− i
)
, t ∈ R+, g ∈ `2(H);

Restriction operator ρµ∆t : L2(R+; H)→ `2(H)

(ρµ∆tg)i :=
1

∆t

∫
R+

g(t)µ
( t

∆t
− i
)

dt, i ∈ N, g ∈ L2(R+; H);

In particular π0 := πψ0
∆t and π1 := πψ1

∆t (same for ρ) for

ψ0(t) :=χ[0,1)(t),

ψ1(t) :=


1 + t if − 1 ≤ t ≤ 0,
1− t if 0 ≤ t ≤ 1,

0 otherwise.

Goal: Obtain stability and convergence results in the J+-norm.
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Analysis of the time discretization - Stability

Proposition

θ ≥ 1/2: assume ‖π0f‖J ∗
+
<∞. Then there exists a constant

C = C(λ−, λ+) > 0 such that∥∥∥π1u
θ
∥∥∥
J+

≤ C ‖π0f‖J ∗
+
.

Moreover, if θ 6= 1/2, there holds

(2θ − 1) ‖π1u‖J+,0
≤ C ‖π0f‖J ∗

+
.

θ < 1/2: assume that ‖π0f‖L2(R+;V∗) <∞ and

‖vh‖V ≤ Cinvh
−1 ‖vh‖H , ∆t <

h2λ−
C 2
inv(1− 2θ)λ2

+

. (8)

Then there exists C = C(λ−, λ+) > 0 such that

(1− 2θ) ‖π1u‖J+,0
≤ C ‖π0f‖L2(R+;V∗) .



Introduction Parabolic equations Numerical Approximation Moving Point Source References

Analysis of the time discretization - Convergence

We define:

J 1,0
+ :=H2(R+; H) ∩ H1

0 (R+; V ),

S1,0
+ :=H1(R+; V ∗).

Theorem

Let θ ∈ [0, 1], f ∈ J ∗+ and set f = ρ1f . Assume that uh ∈ J 1,0
+ and f ∈ S1,0

+

and if θ < 1/2, assume moreover that the CFL and inverse conditions (8) hold.
Then there exists C > 0 such that∥∥∥uh − π1u

θ
∥∥∥
J+

≤ C∆t
(
‖uh‖J 1,0

+
+ ‖f ‖S1,0

+

)
. (9)

Moreover, for θ 6= 1/2, there holds

|2θ − 1| ‖uh − π1u‖J+
≤ C∆t

(
‖uh‖J 1,0

+
+ ‖f ‖S1,0

+

)
. (10)

Proof: Based on Baiocchi & Brezzi [1], which prove the previous results on R.
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Analysis of the space discretization - A special setting

Setting:

Av = − div (A(x)∇v) for a symmetric matrix A ∈
(
W 1,∞(D)

)2×2
such

that there exists λ− > 0 satisfying

2∑
i,j=1

Ai,j(x)ξiξj ≥ λ− |ξ|2 , ∀x ∈ D;

H := L2(D), V := H1
0 (D), where D ⊂ R2 is a bounded convex polygonal

domain;

for an admissible shape regular mesh Th:

V := Vh(Th) :=
{

v ∈ C 0(D)
∣∣∣ v |T ∈ P1(T ), T ∈ Th

}
,

where P1(T ) is the set of polynomials of degree at most 1 on T ∈ Th;

Remark: In that setting, the inverse condition ‖vh‖H1
0 (D) ≤ Cinvh−1 ‖vh‖L2(D)

holds.
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Analysis of the space discretization - A special setting

Regularity:

Lemma

In the previous setting, we have that D(A) = H2(D) ∩ H1
0 (D).

It follows f ∈ H1(R+; L2(D))⇒ u ∈ H2(R+; L2(D))∩H1
0 (R+; H2(D)∩H1

0 (D)).
Convergence:
We define

J 0,1
+,0 := H

1/2
0 (R+; H1

0 (D)) ∩ L2(R+; H1
0 (D) ∩ H2(D)).

Theorem

There exists C > 0 such that if u ∈ J 0,1
+,0, there holds

‖u − uh‖J+,0
≤ Ch ‖u‖J 0,1

+,0
.
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Convergence of the space-time discretization

Wrapping up everything, we obtain the main convergence result:

Theorem

Let θ ∈ [0, 1], f ∈ H1(R+; L2(D)) and set f = ρ1f . If θ < 1/2, assume
moreover that the CFL condition (8) holds. Then there exists C > 0 such that∥∥∥u − π1u

θ
∥∥∥
J+

≤ C (h + ∆t) ‖f ‖H1(R+;L2(D)) .

Moreover if θ 6= 1/2, there holds

‖u − π1u‖J+
≤ C

|2θ − 1| (h + ∆t) ‖f ‖H1(R+;L2(D)) .

Reminder: J+ = H1/2(R+; L2(D)) ∩ L2(R+; H1
0 (D)).

Remark: The ingredients to get this result are:

The convergence results for the space and time discretizations;

The regularity result stated above.
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Moving point source - Regularization

We consider

Bu := ∂tu + Au =f , in I> = (0,T )

u(0) =0,

for
f = c(t)δX (t) .

Problem: For any t ∈ R+, we have δX (t) 6∈ H−1(D) (Sobolev’s embedding).
Idea: Regularize in space: for ε > 0, consider

fε(t) :=
1

µ(Dt,ε)
c(t)χDt,ε ,

where χDt,ε is the characteristic function over

Dt,ε := {(X1(t) + r cos(θ),X2(t) + r sin(θ)) | r ∈ [0, rε(θ)], θ ∈ [0, 2π]} ,

assuming c1ε < rε(θ) < c2ε for some constants c1, c2 > 0.
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Moving point source - Convergence

We denote:

uε as the solution of (5) for f = fε;

uε as the solution of (7) for f = ρ1fε;

It follows that for θ ∈ [0, 1] (under the CFL condition for θ < 1/2)∥∥∥uε − π1u
θ
ε

∥∥∥
J+

≤ C (h + ∆t) ‖f ‖H1(R+;L2(D)) ≈
C

ε
(h + ∆t) .

If θ 6= 1/2:

‖uε − π1uε‖J+
≤ C (h + ∆t) ‖f ‖H1(R+;L2(D)) ≈

C(θ)

ε
(h + ∆t) ,

with C(θ)→∞ as θ → 1/2.
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Moving point source - A qualitative example

D = [−1, 1]2, T = 0.5;

ε = 10−2;

∆t = 5 · 10−4, h ≈ 8 · 10−3, θ = 1;

Computations performed with the C++ library deal.II [2]
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Next steps

We can show that
∥∥∥ 1
µ(Dt,ε)

χDt,ε

∥∥∥
H−1(D)

≈
√
|log(ε)| ⇒ derive bounds for

the L2(R+; L2(D))-norm with respect to the H1(R+; H−1(D))-norm of the
right-hand side;

Computational results;

Other equations;

3D problems;

Uncertain data.
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Questions?
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