Numerical Approximation of Parabolic Equations with Singular Data

Denis Devaud¹, Christoph Schwab ETH Zürich, Seminar for Applied Mathematics

August 17-19, 2015, Disentis Retreat

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

¹Under SNF Grant No. 149819

Seminar for Applied Mathematics

S A

Introduction	Parabolic equations	Numerical Approximation	Moving Point Source	References
Motivation				

- Numerical optimal control;
- Fluid-structure interaction (immersed boundary method [6]);
- $F(\mathbf{x},t) = \int_{D_0(t)} f(\mathbf{s},t) \delta(\mathbf{x}-\mathbf{s}) ds$, with $D_0(t) \subsetneq D$ and $D_0(t) \cap \partial D = \emptyset \ \forall t$;

Question: What happens in the case $D_0(t) = {x(t)}$?

Parabolic equations - General setting

- $V \subset H$ Hilbert spaces with dense continuous embedding;
- $D \subset \mathbb{R}^2$ bounded convex polygonal domain;
- self-adjoint operator $A \in \mathcal{L}(V, V^*)$ s.t. the associated bilinear form $a(u, v) = \langle Au, v \rangle$ satisfies

$$\mathsf{a}(u,v) \leq \lambda_{+} \|u\|_{V} \|v\|_{V}, \qquad \forall u,v \in V, \tag{1}$$

$$a(v,v) \geq \lambda_{-} \|v\|_{V}^{2}, \quad \forall v \in V.$$
 (2)

• Find $u \in \mathcal{J}_+$ satisfying (in the weak sense)

$$Bu := \partial_t u + Au = f, \quad \text{in } I_> = (0, T), \quad (3)$$
$$u(0) = 0. \quad (4)$$

In particular: For $X \in C^1(0, T; D)$ and $c \in H^1(0, T)$, we consider

 $f = c(t)\delta_{X(t)},$

where $\delta_{X(t)}$ is the Dirac measure centered at X(t).

Sobolev spaces

Definition

(i) $H^{1/2}(\mathbb{R}_+;H)$ as the set of functions $u \in L^2(\mathbb{R}_+;H)$ such that

$$\|u\|_{H^{1/2}(\mathbb{R}_+;H)}^2 := \|u\|_{L^2(\mathbb{R}_+;H)}^2 + \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} \frac{\|u(s) - u(t)\|_{H}^2}{|s-t|^2} ds dt < \infty;$$

(ii) $H_0^{1/2}(\mathbb{R}_+;H)$ as the set of functions $u \in H^{1/2}(\mathbb{R}_+;H)$ such that

$$\|u\|_{H_0^{1/2}(\mathbb{R}_+;H)}^2 := \|u\|_{H^{1/2}(\mathbb{R}_+;H)}^2 + \int_{\mathbb{R}_+} \frac{\|u(s)\|_{H}^2}{s} ds < \infty.$$

Remark: Equivalent to interpolation spaces [5].

Definition

For a subspace $\mathcal{V} \subset V$, we define

$$\begin{aligned} \mathcal{J}_{+,0} &:= H_0^{1/2}(\mathbb{R}_+; H) \cap L^2(\mathbb{R}_+; \mathcal{V}), \\ \mathcal{J}_+ &:= H^{1/2}(\mathbb{R}_+; H) \cap L^2(\mathbb{R}_+; \mathcal{V}). \end{aligned}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

	Parabolic equations	Numerical Approximation	Moving Point Source	References
Weak for	nulation			

We define

$$b_+(u,v):=\langle Du,v
angle+\int_{\mathbb{R}_+}a(u,v)dt,\qquad orall u\in\mathcal{J}_{+,0},\,\,v\in\mathcal{J}_+,$$

where (for smooth functions)

$$\langle Du,v\rangle = -\int_{\mathbb{R}_+} (u(t),Dv(t))_H dt.$$

Theorem (Fontes [4])

Given $f\in \mathcal{J}_{+}^{*},$ there exists a unique $u\in \mathcal{J}_{+,0}$ such that

$$b_+(u,v) = \langle f,v \rangle, \quad \forall v \in \mathcal{J}_+.$$
 (5)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moreover, there exists C > 0 such that $\|u\|_{\mathcal{J}_{+,0}} \leq C \|f\|_{\mathcal{J}_{+}^{*}}$.

We have $\mathcal{J}_{+}^{*} \simeq \left\{ g \in H^{-1/2}(\mathbb{R}; H) + L^{2}(\mathbb{R}; \mathcal{V}^{*}) \mid \text{supp}(g) \subset \mathbb{R}_{+} \right\}$. Note: if $\mathcal{V} = V$, we obtain well-posedness of the original problem.

Increased regularity

For $A \in \mathcal{L}(V, V^*)$, we define

$$D(A) := \{ v \in V \mid Av \in H \}.$$

Reminder: We assume that *A* is a *self-adjoint* operator associated to a coercive and continuous bilinear form.

Theorem

If $f \in H^1(\mathbb{R}_+; H)$, it holds $u \in H^2(\mathbb{R}_+; H) \cap H^1_0(\mathbb{R}_+; D(A))$ and there exists C > 0 such that

$$||u||_{H^2(\mathbb{R}_+;H)\cap H^1_0(\mathbb{R}_+;D(A))} \le C ||f||_{H^1(\mathbb{R}_+;H)}.$$

Proof: Similar to the one presented in Evans [3].

	Parabolic equations	Numerical Approximation	Moving Point Source	References
Discretization				

- Assume $\mathcal{V} = \mathcal{V}_h$ is finite dimensional;
- Semidiscrete problem (space approximation): find $u_h \in X_h := H_0^{1/2}(\mathbb{R}_+; H) \cap L^2(\mathbb{R}_+; \mathcal{V}_h)$ such that

$$\langle Du_h, v_h \rangle + \int_{\mathbb{R}_+} a(u_h, v_h) = \langle f, v_h \rangle, \quad \forall v \in Y_h,$$
 (6)

where $Y_h := H^{1/2}(\mathbb{R}_+; H) \cap L^2(\mathbb{R}_+; \mathcal{V}_h).$

• Time stepping: For a time step Δt and $\theta \in [0, 1]$, we set $u_0 = 0$ and consider

$$(u_{j+1}-u_j,v_h)_H + \Delta ta(u_j^{\theta},v_h) = \Delta t \left\langle f_j^{\theta},v_h \right\rangle, \qquad \forall v_h \in \mathcal{V}_h, \ j \in \mathbb{N}, \ (7)$$

where $u_j^{\theta} = \theta u_{j+1} + (1-\theta)u_j$ and $f_j \approx f(j\Delta t)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Analysis of the time discretization - Operators

For $\mu \in L^2(\mathbb{R}_+; H)$, we define:

• Prolongation operator $\pi^{\mu}_{\Delta t}: \ell^2(H) \to L^2(\mathbb{R}_+; H):$

$$\pi^{\mu}_{\Delta t} \mathbf{g}(t) := \sum_{i \in \mathbb{N}} g_i \mu\left(rac{t}{\Delta t} - i
ight), \qquad t \in \mathbb{R}_+, \,\, \mathbf{g} \in \ell^2(H);$$

• Restriction operator $ho^{\mu}_{\Delta t}: L^2(\mathbb{R}_+; \mathcal{H}) o \ell^2(\mathcal{H})$

$$(
ho_{\Delta t}^{\mu}g)_i := rac{1}{\Delta t}\int_{\mathbb{R}_+}g(t)\mu\left(rac{t}{\Delta t}-i
ight)dt, \qquad i\in\mathbb{N}, \ g\in L^2(\mathbb{R}_+;H);$$

• In particular $\pi_0:=\pi_{\Delta t}^{\psi_0}$ and $\pi_1:=\pi_{\Delta t}^{\psi_1}$ (same for ho) for

$$egin{aligned} \psi_0(t) :=& \chi_{[0,1)}(t), \ \psi_1(t) := \left\{ egin{aligned} 1+t & ext{if } -1 \leq t \leq 0, \ 1-t & ext{if } 0 \leq t \leq 1, \ 0 & ext{otherwise.} \end{aligned}
ight. \end{aligned}$$

Goal: Obtain stability and convergence results in the \mathcal{J}_+ -norm.

Analysis of the time discretization - Stability

Proposition

• $\theta \ge 1/2$: assume $\|\pi_0 f\|_{\mathcal{J}^*_+} < \infty$. Then there exists a constant $C = C(\lambda_-, \lambda_+) > 0$ such that

$$\left\|\pi_1 \mathbf{u}^{\theta}\right\|_{\mathcal{J}_+} \leq C \left\|\pi_0 \mathbf{f}\right\|_{\mathcal{J}_+^*}.$$

Moreover, if $\theta \neq 1/2$, there holds

$$\left(2 heta-1
ight)\left\|\pi_{1}\mathsf{u}
ight\|_{\mathcal{J}_{+,0}}\leq C\left\|\pi_{0}\mathsf{f}
ight\|_{\mathcal{J}_{+}^{*}}$$

• $\theta < 1/2$: assume that $\|\pi_0 \mathbf{f}\|_{L^2(\mathbb{R}_+;V^*)} < \infty$ and

$$\|v_h\|_V \le C_{inv}h^{-1}\|v_h\|_H, \ \Delta t < \frac{h^2\lambda_-}{C_{inv}^2(1-2 heta)\lambda_+^2}.$$
 (8)

Then there exists $C = C(\lambda_-, \lambda_+) > 0$ such that

$$(1-2\theta) \|\pi_1 \mathbf{u}\|_{\mathcal{J}_{+,0}} \leq C \|\pi_0 \mathbf{f}\|_{L^2(\mathbb{R}_+;V^*)}.$$

Analysis of the time discretization - Convergence

We define:

$$\begin{aligned} \mathcal{J}_{+}^{1,0} &:= H^{2}(\mathbb{R}_{+}; H) \cap H^{1}_{0}(\mathbb{R}_{+}; V), \\ \mathcal{S}_{+}^{1,0} &:= H^{1}(\mathbb{R}_{+}; V^{*}). \end{aligned}$$

Theore<u>m</u>

Let $\theta \in [0,1]$, $f \in \mathcal{J}^*_+$ and set $\mathbf{f} = \rho_1 f$. Assume that $u_h \in \mathcal{J}^{1,0}_+$ and $f \in \mathcal{S}^{1,0}_+$ and if $\theta < 1/2$, assume moreover that the CFL and inverse conditions (8) hold. Then there exists C > 0 such that

$$\left\|u_{h}-\pi_{1}\mathbf{u}^{\theta}\right\|_{\mathcal{J}_{+}}\leq C\Delta t\left(\left\|u_{h}\right\|_{\mathcal{J}_{+}^{1,0}}+\left\|f\right\|_{\mathcal{S}_{+}^{1,0}}\right).$$
(9)

Moreover, for $\theta \neq 1/2$, there holds

$$|2\theta - 1| \|u_h - \pi_1 \mathbf{u}\|_{\mathcal{J}_+} \le C\Delta t \left(\|u_h\|_{\mathcal{J}_+^{1,0}} + \|f\|_{\mathcal{S}_+^{1,0}} \right).$$
(10)

Proof: Based on Baiocchi & Brezzi [1], which prove the previous results on \mathbb{R} .

Analysis of the space discretization - A special setting

Setting:

Av = − div (A(x)∇v) for a symmetric matrix A ∈ (W^{1,∞}(D))^{2×2} such that there exists λ_− > 0 satisfying

$$\sum_{i,j=1}^{2}\mathcal{A}_{i,j}(x)\xi_i\xi_j\geq\lambda_{-}\left|\xi
ight|^2,\qquadorall x\in D;$$

- *H* := *L*²(*D*), *V* := *H*¹₀(*D*), where *D* ⊂ ℝ² is a bounded convex polygonal domain;
- for an *admissible shape regular* mesh \mathcal{T}_h :

$$\mathcal{V} := \mathcal{V}_h(\mathcal{T}_h) := \left\{ v \in C^0(D) \ \Big| \ v|_{\mathcal{T}} \in \mathbb{P}^1(\mathcal{T}), \ \mathcal{T} \in \mathcal{T}_h \right\},$$

where $\mathbb{P}^{1}(\mathcal{T})$ is the set of polynomials of degree at most 1 on $\mathcal{T} \in \mathcal{T}_{h}$; **Remark**: In that setting, the inverse condition $\|v_{h}\|_{H_{0}^{1}(D)} \leq C_{inv}h^{-1} \|v_{h}\|_{L^{2}(D)}$ holds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Analysis of the space discretization - A special setting

Regularity:

Lemma

In the previous setting, we have that $D(A) = H^2(D) \cap H^1_0(D)$.

It follows $f \in H^1(\mathbb{R}_+; L^2(D)) \Rightarrow u \in H^2(\mathbb{R}_+; L^2(D)) \cap H^1_0(\mathbb{R}_+; H^2(D) \cap H^1_0(D)).$ Convergence: We define

$$\mathcal{J}^{0,1}_{+,0} := H^{1/2}_0(\mathbb{R}_+; H^1_0(D)) \cap L^2(\mathbb{R}_+; H^1_0(D) \cap H^2(D)).$$

Theorem

There exists C > 0 such that if $u \in \mathcal{J}^{0,1}_{+,0}$, there holds

$$\|u-u_h\|_{\mathcal{J}_{+,0}} \leq Ch \|u\|_{\mathcal{J}_{+,0}^{0,1}}.$$

Convergence of the space-time discretization

Wrapping up everything, we obtain the main convergence result:

Theore<u>m</u>

Let $\theta \in [0,1]$, $f \in H^1(\mathbb{R}_+; L^2(D))$ and set $\mathbf{f} = \rho_1 f$. If $\theta < 1/2$, assume moreover that the CFL condition (8) holds. Then there exists C > 0 such that

$$\left\| u - \pi_1 \mathbf{u}^{\theta} \right\|_{\mathcal{J}_+} \leq C \left(h + \Delta t \right) \left\| f \right\|_{H^1(\mathbb{R}_+; L^2(D))}$$

Moreover if $\theta \neq 1/2$, there holds

$$\|u - \pi_1 \mathbf{u}\|_{\mathcal{J}_+} \leq rac{C}{|2 heta - 1|} \left(h + \Delta t\right) \|f\|_{H^1(\mathbb{R}_+; L^2(D))}.$$

Reminder: $\mathcal{J}_+ = H^{1/2}(\mathbb{R}_+; L^2(D)) \cap L^2(\mathbb{R}_+; H^1_0(D)).$ **Remark**: The ingredients to get this result are:

- The convergence results for the space and time discretizations;
- The regularity result stated above.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moving point source - Regularization

We consider

$$Bu := \partial_t u + Au = f, \qquad \text{in } I_> = (0, T)$$
$$u(0) = 0,$$

for

$$f=c(t)\delta_{X(t)}.$$

Problem: For any $t \in \mathbb{R}_+$, we have $\delta_{X(t)} \notin H^{-1}(D)$ (Sobolev's embedding). **Idea**: Regularize in space: for $\varepsilon > 0$, consider

$$f_arepsilon(t):=rac{1}{\mu(D_{t,arepsilon})}c(t)\chi_{D_{t,arepsilon}}\,,$$

where $\chi_{D_{t,\varepsilon}}$ is the characteristic function over

$$D_{t,\varepsilon} := \left\{ (X_1(t) + r\cos(\theta), X_2(t) + r\sin(\theta)) \mid r \in [0, r_{\varepsilon}(\theta)], \ \theta \in [0, 2\pi] \right\},$$

assuming $c_1 \varepsilon < r_{\varepsilon}(\theta) < c_2 \varepsilon$ for some constants $c_1, c_2 > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Moving point source - Convergence

We denote:

- *u*_ε as the solution of (5) for *f* = *f*_ε;
- \mathbf{u}_{ε} as the solution of (7) for $\mathbf{f} = \rho_1 f_{\varepsilon}$;

It follows that for $heta \in [0,1]$ (under the CFL condition for heta < 1/2)

$$\left\| u_{\varepsilon} - \pi_{1} \mathbf{u}_{\varepsilon}^{\theta} \right\|_{\mathcal{J}_{+}} \leq C \left(h + \Delta t \right) \| f \|_{H^{1}(\mathbb{R}_{+}; L^{2}(D))} \approx \frac{C}{\varepsilon} \left(h + \Delta t \right).$$

If $\theta \neq 1/2$:

$$\left\| u_{\varepsilon} - \pi_1 \mathbf{u}_{\varepsilon} \right\|_{\mathcal{J}_+} \leq C \left(h + \Delta t \right) \left\| f \right\|_{H^1(\mathbb{R}_+; L^2(D))} pprox rac{C(heta)}{arepsilon} \left(h + \Delta t \right),$$

with $C(heta) o \infty$ as $heta o 1/2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Moving point source - A qualitative example

•
$$D = [-1, 1]^2$$
, $T = 0.5$;

•
$$\varepsilon = 10^{-2};$$

•
$$\Delta t = 5 \cdot 10^{-4}$$
, $h \approx 8 \cdot 10^{-3}$, $\theta = 1$;

Computations performed with the C++ library deal.II [2]

Parabolic equations	Numerical Approximation	Moving Point Source	References

Next steps

• We can show that $\left\|\frac{1}{\mu(D_{t,\varepsilon})}\chi_{D_{t,\varepsilon}}\right\|_{H^{-1}(D)} \approx \sqrt{|\log(\varepsilon)|} \Rightarrow$ derive bounds for the $L^2(\mathbb{R}_+; L^2(D))$ -norm with respect to the $H^1(\mathbb{R}_+; H^{-1}(D))$ -norm of the right-hand side;

- ロ ト - 4 回 ト - 4 □ - 4

- Computational results;
- Other equations;
- 3D problems;
- Uncertain data.

References

- C. BAIOCCHI AND F. BREZZI, Optimal error estimates for linear parabolic problems under minimal regularity assumptions, Calcolo, 20 (1983), pp. 143–176 (1984).
- W. BANGERTH, T. HEISTER, L. HELTAI, G. KANSCHAT, M. KRONBICHLER, M. MAIER, B. TURCKSIN, AND T. D. YOUNG, *The deal.II library, version 8.3*, Archive of Numerical Software, 3 (2015).
- L. C. EVANS, *Partial differential equations*, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second ed., 2010.
- M. FONTES, *Initial-boundary value problems for parabolic equations*, Ann. Acad. Sci. Fenn. Math., 34 (2009), pp. 583–605.
- J.-L. LIONS AND E. MAGENES, *Problèmes aux limites non homogènes et applications. Vol. 1*, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.
- C. S. PESKIN, *The immersed boundary method*, Acta Numer., 11 (2002), pp. 479–517.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Questions?

